• Title/Summary/Keyword: fungi sp

Search Result 576, Processing Time 0.032 seconds

Studies on Characterization of Active Substances from Antagonistic Streptomyces sp. A-2 Strain against Soil-borne Phytopathogen (토양병원균(土壤病原菌) 길항성(拮抗性) Streptomyces sp. A-2 활성물질(活性物質)의 특성(特性)에 관한 연구(硏究))

  • Park, Kyoung-Soo;Ryu, Jin-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.401-406
    • /
    • 1992
  • Antifungal substances against three plant pathogenic fungi, Phytophthora capsici, Phytophthora nicotianae var. parasitica and Rhizoctionaia solani were fractionated cultures of Streptomyces sp. A-2 strain isolated in Korean soils. Characterizations of active substances related with antagonistic effects were follows : 1. The excellent media which showed the transfer efficiency of antagonistic substances from Streptomyces sp. A-2 strain G.Y.B and B.H.I. among four that are glucose yeast broth (G.Y.B), $M\ddot{u}eller$, brain heart infusion(B.H.I.) and Czapek media. Active substances which were transfered into ethylacetate or left in residual aqueous phase did not lose antagonistic activity in spite of autoclavation. This indicated that bonds of these compounds were rigid enough to keep activity under such conditions. 2. Antagonistic substances were extracted according to adjustment of pH 3 or pH12 to 5 day-old B.H.I. broth cultures of Streptomyces sp. A-2 strain. Comparative analysis fluorescent bands on HPTLC to antagonsitic spectra against three phytopathogenic fungi indicated that major substances with antagonistic activity were extracted regardless of different pH adjustment to broth cultures. Since UV spectrum of these fractions scanned from 500nm to 200nm was similiar to that of polyene macrolide, major substances related with antagonistic activities were assumed to be polyene derivatives antibiotics.

  • PDF

Effects of glycine on microbial safety of low-salted squid and myungran jeotgal (글리신을 활용한 저염 오징어 및 명란 젓갈의 미생물 안전성 확보)

  • Choi, Jun-Bong;Cheon, Hee Soon;Chung, Myong-Soo;Cho, Won-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.114-119
    • /
    • 2019
  • Seven antimicrobial agents known to be effective in inhibiting the growth of lactic acid bacteria were applied to ensure the microbial safety of low-salted squid and myungran jeotgal with 4-6% salinity. These agents reduced the salt content by 50% compared with the conventional Jeotgal. Lactic acid bacteria such as Lactobacillus sp., Streptococcus sp., and Pediococcus sp. were commonly found to account for 80% of microbial organisms, and yeast and fungi were observed in squid and myungran jeotgal, respectively. The total bacterial counts in squid and myungran jeotgal showed 94.20 and 90.87% reduction after the addition of 0.5% (w/w) glycine. The microbial counts in squid and myungran jeotgal decreased $10^1-10^2CFU/g$ when compared with the control after 21 days at $10^{\circ}C$. Glycine was found to be an effective commercial antimicrobial agent that can be used to control bacterial count in low-salted Jeotgal without affecting sensory qualities such as overall taste and flavor.

Analysis of the Inhibitory Effect of two Bacterial Strains on Metarhizium anisopliae Induced Fatality Rates in Protaetia Brevitarsis

  • Kwak, Kyu-Won;Nam, Sung-Hee;Park, Kwan-Ho;Lee, Heuisam;Han, Myung-Sae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • Bacterial species, Bacillus amyloliquefaciens and Lactobacillus species (L. sp.5-1), are known to inhibit the growth of pathogenic bacteria and fungi. Metarhizium anisopliae is a pathogenic fungal species which causes fatal damage to P. brevitarsis populations. Therefore, we investigated the inhibitory effect of B. amyloliquefaciens and L. sp. 5-1 on M. anisopliae induced fatality rates in P. brevitarsis. Samples of M. anisopliae-infected sawdust were treated with strain B. amyloliquefaciens KACC10116, strain L. sp. 5-1 KACC19351, and a combination of the two. P. brevitarsis were fed treated sawdust samples, and their subsequent fatality rate was monitored. The fatality rate fell below 1.5% after 10 days and decreased by approximately 40% after 15 days. On average, the fatality rate decreased by 20%, compared to the control. The difference in the decrease in fatality rate between B. amyloliquefaciens treatment and L. sp. 5-1 treatment was not significant. Results indicate that both strains exhibit high anti-fungal activity, which may be useful in environmental purification efforts. These strains may be used for effective prevention of fungal infection in P. brevitarsis.

Production of Laccase by Trametes sp. CJ-105 (Trametes sp. CJ-105에 의한 Laccase 생산)

  • 오광근;김현수;이재흥;전영중
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.477-483
    • /
    • 1999
  • For Trametes sp. CJ-105, a kind of white-rot fungi which was collected from the mountain of Korea and was proven to be effective in decolorizing a wide range of structurally different synthetic dyes, the optimum conditions for mycelial growth and laccase(E.C. 1.10.3.2) production were investigated. Among various carbon sources, glucose showed the highest potential for the mycelial growth and laccase production, the optimum concentration being 2% glucose. For the nitrogen source, asparagine was good for the mycelial growth, while ammonium tartrate for laccase production(optimum concentration: 0.04%). The addition of thiamine and biotin increased both th emycelial growth and laccase production. When 2,5-xylidine was added as an inducer after the first day of culture, the production of alccase was seven-times higher than that in the absence of the inducer. The optimum pH and temperature conditions for laccase production by Trametes sp. CJ-105 were pH 5.0 and $25^{\circ}C$, respectively. In the 5L fermentation, the production of laccase reached a maximum of 340U/ml at the time when the ammonium ion was being rapidly depleted.

  • PDF

Pathogenesis of Oak Wilt Disease Caused by Raffaelea Species

  • Kim, Sang Woo;Yadav, Dil Raj;Adhikari, Mahesh;Um, Yong Hyun;Kim, Hyun Seung;Lee, Youn Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.18-18
    • /
    • 2015
  • Wilt disease in Oak trees occurs during summer season in Korea. Mass attack of trees by an ambrosia beetle (Platypus koryoensis) was the characteristic feature before appearance of the wilting symptoms. Raffaelea sp. caused the discoloration of xylem area called as wound heartwood. Raffaelea sp. was observed both on the body surfaces and inside the mycangia of the beetle Platypus sp. The scanning electron microscope (SEM) analysis showed that fungal spores were present within the wall of gallery and vessels that formed tyloses. The results revealed that the water movement in vessels was blocked as the fungus started to grow which caused the formation of tyloses thereby resulting wilt symptoms. We found that both female and male beetle Platypus sp. had fungi on their bodies and their large and small mycangia. This study confirmed that the fungus was transferred to oak trees by Platypus sp.

  • PDF

Antifungal Activity of Paenibacillus sp. IUB225-08 Against Colletotrichum gloeosporioides (Paenibacillus sp. IUB225-08의 Colletotrichum gloeosporioides에 대한 항균활성)

  • Kim, Hye Young;Lee, Tea Soo
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.258-265
    • /
    • 2012
  • Bacterial strains isolated from diseased red pepper fruits showed inhibitory effect on mycelial growth and spore germination of Colletotrichum gloeosporioides. The bacterium was identified as Paenibacillus sp. based on its physiological, biochemical characteristics and MicroLog analysis and named Paenibacillus sp. IUB225-08. The bacterium showed the highest level of antifungal activity C. gloeosporioides when cultured at $25^{\circ}C$ for 60 hrs in LB broth with initial pH of 7.0. The butanol fraction from culture extract of Paenibacillus sp. IUB225-08 effectively inhibited the mycelial growth and spore germination of C. gloeosporioides than any other agricultural chemicals tested. Pepper fruits and seeds treated with spores of C. gloeosporioides showed symptoms, while those treated with the culture extract and C. gloeosporioides together did not show any symptoms. Therefore, the culture extract of Paenibacillus sp. IUB225-08 have a potential for biocontrol agent of red pepper anthracnose.

Diversity and Characteristics of the Meat Microbiological Community on Dry Aged Beef

  • Ryu, Sangdon;Park, Mi Ri;Maburutse, Brighton E.;Lee, Woong Ji;Park, Dong-Jun;Cho, Soohyun;Hwang, Inho;Oh, Sangnam;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.105-108
    • /
    • 2018
  • Beef was dry aged for 40-60 days under controlled environmental conditions in a refrigerated room with a relative humidity of 75%-80% and air-flow. To date, there is little information on the microbial diversity and characteristics of dry aged beef. In this study, we explored the effect of change in meat microorganisms on dry aged beef. Initially, the total bacteria and LAB were significantly increased for 50 days during all dry aging periods. There was an absence of representative foodborne pathogens as well as coliforms. Interestingly, fungi including yeast and mold that possess specific features were observed during the dry aging period. The 5.8S rRNA sequencing results showed that potentially harmful yeasts/molds (Candida sp., Cladosporium sp., Rhodotorula sp.) were present at the initial point of dry aging and they disappeared with increasing dry aging time. Interestingly, Penicillium camemberti and Debaryomyces hansenii used for cheese manufacturing were observed with an increase in the dry aging period. Taken together, our results showed that the change in microorganisms exerts an influence on the quality and safety of dry aged beef, and our study identified that fungi may play an important role in the palatability and flavor development of dry aged beef.

Pyrophen Produced by Endophytic Fungi Aspergillus sp Isolated from Piper crocatum Ruiz & Pav Exhibits Cytotoxic Activity and Induces S Phase Arrest in T47D Breast Cancer Cells

  • Astuti, Puji;Erden, Willy;Wahyono, Wahyono;Wahyuono, Subagus;Hertiani, Triana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.615-618
    • /
    • 2016
  • Ethyl acetate extracts obtained from culture of endophytic fungi Aspergillus sp isolated from Piper crocatum Ruiz & Pav, have been shown to possess cytotoxic activity against T47D breast cancer cells. Investigations were here conducted to determine bioactive compounds responsible for the activity. Bioassay guided fractionation was employed to obtain active compounds. Structure elucidation was performed based on analysis of LC-MS, $^1H$-NMR, $^{13}C$-NMR, COSY, DEPT, HMQC, HMBC data. Cytotoxity assays were conducted in 96 well plates against T47D and Vero cell lines. Bioassay guided isolation and chemical investigation led to the isolation of pyrophen, a 4-methoxy-6-(1'-acetamido-2'-phenylethyl)-2H-pyran-2-one. Further analysis of its activity against T47D and Vero cells showed an ability to inhibit the growth of T47D cells with IC50 values of $9.2{\mu}g/mL$ but less cytotoxicity to Vero cells with an $IC_{50}$ of $109{\mu}g/mL$. This compound at a concentration of 400 ng/mL induced S-phase arrest in T47D cells.

Experimental Analysis of Interactions Among Saprotrophic Fungi from A Phosphorous-Poor Desert Oasis in the Chihuahuan Desert

  • Marini-Macouzet, Constanza;Munoz, Luis;Gonzalez-Rubio, Aldo;Eguiarte, Luis E.;Souza, Valeria;Velez, Patricia
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.410-417
    • /
    • 2020
  • Fungal ecological interactions play a key role in structuring community assemblages. These associations may involve both antagonistic and synergistic relationships, which are commonly influenced by abiotic factors such as nutrient conditions. However, information for extreme, oligotrophic systems remain poor. Herein, interactions among key members of the aquatic transient fungal community (Aspergillus niger, Cladosporium sp., and Coprinellus micaceus) of a low-nutrient freshwater system in the Cuatro Ci enegas Basin, Mexico were studied. Pairwise interaction bioassays were explored in vitro under different nutrient conditions, including carbohydrates-rich, carbohydrates and amino peptides-rich, and low nutrients. Our results indicated that antagonistic patterns prevail among the studied taxa. However, nutrient-dependent changes were observed in Cladosporium sp. shifting to synergy under carbohydrates-rich conditions, suggesting changes in the fungal community composition as a result of nutrient enrichment. Remarkably, our findings contrast with previous work demonstrating mainly synergistic interactions between our tested fungal isolates and co-occurring autochthonous bacteria (Aeromonas spp. and Vibrio sp.) under low-nutrient conditions. This observation may indicate that bacteria and fungi exhibit distinct community-level responses, driven by nutrient conditions. This contributes to the knowledge of fungal community dynamics and interspecific interactions in an oligotrophic ecosystem, highlighting the relevance of nutrient-based shifts and antagonistic interactions in ecosystem dynamics.

Acremonidin E produced by Penicillium sp. SNF123, a fungal endophyte of Panax ginseng, has antimelanogenic activities

  • Kim, Kyuri;Jeong, Hae-In;Yang, Inho;Nam, Sang-Jip;Lim, Kyung-Min
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.98-107
    • /
    • 2021
  • Background: Ginseng extracts and ginseng-fermented products are widely used as functional cosmetic ingredients for their whitening and antiwrinkle effects. Recently, increasing attention has been given to bioactive metabolites isolated from endophytic fungi. However, little is known about the bioactive metabolites of the fungi associated with Panax ginseng Meyer. Methods: An endophytic fungus, Penicillium sp. SNF123 was isolated from the root of P. ginseng, from which acremonidin E was purified. Acremonidin E was tested on melanin synthesis in the murine melanoma cell line B16F10, in the human melanoma cell line MNT-1, and in a pigmented 3D-human skin model, Melanoderm. Results: Acremonidin E reduced melanogenesis in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 cells with minimal cytotoxicity. qRT-PCR analysis demonstrated that acremonidin E downregulated melanogenic genes, including tyrosinase and tyrosinase-related protein 1 (TRP-1), while their enzymatic activities were unaffected. The antimelanogenic effects of acremonidin E were further confirmed in MNT-1 and a pigmented 3D human epidermal skin model, Melanoderm. Immunohistological examination of the Melanoderm further confirmed the regression of both melanin synthesis and melanocyte activation in the treated tissue. Conclusion: This study demonstrates that acremonidin E, a bioactive metabolite derived from a fungal endophyte of P. ginseng, can inhibit melanin synthesis by downregulating tyrosinase, illuminating the potential utility of microorganisms associated with P. ginseng for cosmetic ingredients.