• Title/Summary/Keyword: fungal infections

Search Result 151, Processing Time 0.026 seconds

In vivo Anti-fungal Activity of the Essential Oil Fraction from Thymus Species and in vitro Synergism with Clotrimazole

  • Kim, Ji-Hyun;Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.13 no.3
    • /
    • pp.258-262
    • /
    • 2007
  • The antifungal activity of the essential oil fraction from Thymus magus, and its major component thymol, against Candida albicans was investigated in vitro and in vivo. The combined effects of the oils and clotrimazole, a commonly used antifungal drug for treatment of external candidiasis, were evaluated in this study. In experimental vaginal candidiasis the essential oil fraction of T. magnus resulted in relatively milder inhibition of fungal growth following the inoculation of test mice compared to clotrimazole. However, new fungal growth was not detected up to 12 days after cessation of treatment. In contrast, in a similar experiment using clotrimazole, C. albicans was detected in the $12^{th}$ day post-treatment with the sample. This result indicates that T. magnus oil could be a promising drug to control vaginal candidiasis. In checkerboard titer tests, the combination of clotrimazole with the essential oil fraction of T. magus or T. quinquecostatus resulted in significant synergism, with FIC indices between 0.14 and 0.27 against C. albicans, while clotrimazole combined with thymol, the major component of these oils, produced only an additive effect, with FIC indices ranging between 0.50 and 1.00. Thus, the prominent synergistic effects of clotrimazole combined with T. magus essential oil indicate that these compounds may be an effective treatment for C. albicans infections.

Novel Approaches for Efficient Antifungal Drug Action

  • Lee, Heejeong;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1771-1781
    • /
    • 2018
  • The emergence of multidrug-resistant microorganisms, as well as fungal infectious diseases that further threaten health, especially in immunodeficient populations, is a major global problem. The development of new antifungal agents in clinical trials is inferior to the incidence of drug resistance, and the available antifungal agents are restricted. Their mechanisms aim at certain characteristics of the fungus in order to avoid biological similarities with the host. Synthesis of the cell wall and ergosterol are mainly targeted in clinical use. The need for new approaches to antifungal therapeutic agents or development alternatives has increased. This review explores new perspectives on mechanisms to effectively combat fungal infections and effective antifungal activity. The clinical drug have a common feature that ultimately causes caspase-dependent cell death. The drugs-induced cell death pathway is associated with mitochondrial dysfunction, including mitochondrial membrane depolarization and cytochrome c release. This mechanism of action also reveals antimicrobial peptides, the primary effector molecules of innate systems, to highlight new alternatives. Furthermore, drug combination therapy is suggested as another strategy to combat fungal infection. The proposal for a new approach to antifungal agents is not only important from a basic scientific point of view, but will also assist in the selection of molecules for combination therapy.

Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications

  • Khan, Raham Sher;Sjahril, Rinaldi;Nakamura, Ikuo;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Potato (Solanum tuberosum L.), one of the most important food crops, is susceptible to a number of devastating fungal pathogens in addition to bacterial and other pathogens. Producing disease-resistant cultivars has been an effective and useful strategy to combat the attack of pathogens. Potato was transformed with Agrobacterium tumefaciens strain EHA101 harboring chitinase, (ChiC) isolated from Streptomyces griseus strain HUT 6037 and bialaphos resistance (bar) genes in a binary plasmid vector, pEKH1. Polymerase chain reaction (PCR) analysis revealed that the ChiC and bar genes are integrated into the genome of transgenic plants. Different insertion sites of the transgenes (one to six sites for ChiC and three to seven for bar) were indicated by Southern blot analysis of genomic DNA from the transgenic plants. Expression of the ChiC gene at the messenger RNA (mRNA) level was confirmed by Northern blot analysis and that of the bar gene by herbicide resistance assay. The results obviously confirmed that the ChiC and bar genes are successfully integrated and expressed into the genome, resulting in the production of bialaphos-resistant transgenic plants. Disease-resistance assay of the in vitro and greenhouse-grown transgenic plants demonstrated enhanced resistance against the fungal pathogen Alternaria solani (causal agent of early blight).

The Antifungal Activity of Bee Venom against Dermatophytes

  • Yu, A-Reum;Kim, Jum-Ji;Park, Gil-Sun;Oh, Su-Mi;Han, Chung-Sub;Lee, Mi-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • The antifungal activities of the bee venom against Trichophyton mentagrophytes and Trichophyton rubrum were determined by using modified broth dilution assay. The most common dermatophytes, named T. mentagrophytes and T. rubrum, were known to cause a variety of cutaneous infections in humans and animals. The bee venom exhibited prominent antifungal activities against the two dermatophytes tested in this investigation. Moreover, the antifungal activities of the bee venom were much stronger than that of fluconazole, one of the commercial antifungal drugs used in the treatment and prevention of superficial and systemic fungal infections. The result suggests that bee venom could be developed as a natural antifungal drug.

SUGICAL TREATMENT OF MUCOSITIS AND FUNGAL INFECTION IN THE ACUTE LEUKEMIC PATIENTS (급성 백혈병 환자에서 점막 질환과 진균감염의 외과적 처치)

  • Ha, Won-Suk;Ye, Young-Geun;Park, Jae-Hong;Pyo, Sung-Un;Yun, Hyun-Jung;Lee, Sang-Hwa
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.2
    • /
    • pp.172-177
    • /
    • 2006
  • It is generally known that mucositis which often occur on hematopoietic disease patients, shows local necrosis of oral mucosa when the CBC is below the normal range. But sometimes, the lesions are occasionally infiltrate into adjacent tissue. When the pathologic destructive expansion is occurred, differential diagnosis with fungal infection, one of opportunistic infections, is needed. This means treatment and prognosis can be changed according to the diagnosis. So the diagnostic process is more important in this hematopoietic disease patients. In case of fungal infection, the range of tissue damage can expand broadly, and also proper antifungal agent and surgical extirpation should be done. After operation, continuous antifungal therapy and observations are needed. We made a comparative study of following 2 cases of fungal infection appeared on the acute lymphatic leukemia patients to discuss what the proper surgical treatment and medications are, and when the proper surgical intervention time is.

Analysis of fungal hyphae, distribution and motility of bacteria in oral cavity according to halitosis (구취에 따른 구강 내 형태별 세균의 분포 및 운동성, 진균 균사 분석)

  • Kim, Do Kyeong;Byeon, You-Kyeong;Choi, Hyun-Ji;Lee, Ga-Ram;Choi, Yu-Ri;Choi, Yu-Jin
    • Journal of Korean Academy of Dental Administration
    • /
    • v.6 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • Halitosis is primarily caused by bacterial decay. The bacteria, which originate from biofilms such as dental plaque, show abnormal proliferation due to dental caries, periodontal diseases, soft tissue infections, and tongue diseases. Most studies on halitosis have exclusively focused on gram-negative bacteria in the oral cavity rather than on general oral microorganisms including oral fungi. This study analyzed oral fungal hyphae, as well as distribution and motility of oral microorganisms, and provided basic data on the control of halitosis. Our results revealed that the greater is the number of cocci bacteria, the higher is the halitosis value, or bad breath value (BBV), suggesting that cocci have a strongly positive correlation with halitosis (r=0.379, p=0.030). Moreover, there was no significant difference in the morphology or distribution of motile bacteria and motility score, with respect to BBV. Lastly, we investigated the relationship between halitosis and oral fungal hyphae. We found that a higher BBV corresponded with a greater number of fungal hyphae and that patients with fungal hyphae scored a higher BBV. However, this result was not statistically significant. In conclusion, this study provided the preliminary data on oral microorganisms and halitosis, but further studies are needed to analyze the relationship between oral microorganisms and halitosis.

Orbital floor defect caused by invasive aspergillosis: a case report and literature review

  • Sang Woo Han;Min Woo Park;Sug Won Kim;Minseob Eom;Dong Hwan Kwon;Eun Jung Lee;Jiye Kim
    • Archives of Craniofacial Surgery
    • /
    • v.25 no.1
    • /
    • pp.27-30
    • /
    • 2024
  • Fungal sinusitis is relatively rare, but it has become more common in recent years. When fungal sinusitis invades the orbit, it can cause proptosis, chemosis, ophthalmoplegia, retroorbital pain, and vision impairment. We present a case of an extensive orbital floor defect due to invasive fungal sinusitis. A 62-year-old man with hypertension and a history of lung adenocarcinoma, presented with right-side facial pain and swelling. On admission, the serum glucose level was 347 mg/dL, and hemoglobin A1c was 11.4%. A computed tomography scan and a Waters' view X-ray showed right maxillary sinusitis with an orbital floor defect. On hospital day 3, functional endoscopic sinus surgery was performed by the otorhinolaryngology team, and an aspergilloma in necrotic inflammatory exudate obtained during exploration. On hospital day 7, orbital floor reconstruction with a Medpor Titan surgical implant was done. In principle, the management of invasive sino-orbital fungal infection often begins with surgical debridement and local irrigation with an antifungal agent. Exceptionally, in this case, debridement and immediate orbital floor reconstruction were performed to prevent enophthalmos caused by the extensive orbital floor defect. The patient underwent orbital floor reconstruction and received intravenous and oral voriconazole. Despite orbital invasion, there were no ophthalmic symptoms or sequelae.

A CLINICAL STUDY ON ORAL & MAXILLOFACIAL FASCIAL SPACE ABCESS (구강악안면 근막간극감염에 관한 임상적 고찰)

  • Shin, Sang-Hun;Park, Sung-Hwan;Hwang, Hee-Sung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.2
    • /
    • pp.152-157
    • /
    • 1998
  • Disturbances of the interrelationship among the host, environment, microorganism will cause the infection clinically. Infection can be classified into bacterial, viral, fungal origin, Bacterial infection is most common due to dental caries, periodontal disease. These infections have the potential to spread via the fascial spaces in the head and neck region. We have undertaken clinical studies on infections in the oral and maxillofacial regions by analyzing 78 hospitalized patients in the Dept. of Oral and Maxillofacial Surgery, Dong-A University Hospital from 1994 to 1997. The results were as fellows; l. Odontogenic infections were most common with the incidence of 84.6%. 2. Considering the number of involved space, single space was 83.3%, double or more space was 16.6%. The most common fascial space involved was submandibular space and followed by buccal space, 3. The most causative organism isolated from the pus cultures was streptococci group 35.4%. 4. Antibiotics were administrated in all cases, and surgical incision and drainage was performed in 87.2%. 5. Combined administration of penicillin and aminoglycoside was most common in 34.6%.. 6. 7 cases were diagnosed as Ludwig's angina and tracheostomy was done in 2 cases of them.

  • PDF

Antifungal Activity of Salvia miltiorrhiza Against Candida albicans Is Associated with the Alteration of Membrane Permeability and (1,3)-β-D-Glucan Synthase Activity

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.610-617
    • /
    • 2016
  • Candidiasis has posed a serious health risk to immunocompromised patients owing to the increase in resistant yeasts, and Candida albicans is the prominent pathogen of fungal infections. Therefore, there is a critical need for the discovery and characterization of novel antifungals to treat infections caused by C. albicans. In the present study, we report on the antifungal activity of the ethanol extract from Salvia miltiorrhiza against C. albicans and the possible mode of action against C. albicans. The increase in the membrane permeability was evidenced by changes in diphenylhexatriene binding and release of both 260-nm-absorbing intracellular materials and protein. In addition, inhibition of cell wall synthesis was demonstrated by the enhanced minimal inhibitory concentration in the presence of sorbitol and reduced (1,3)-β-D-glucan synthase activity. The above evidence supports the notion that S. miltiorrhiza has antifungal activity against C. albicans by the synergistic activity of targeting the cell membrane and cell wall. These findings indicate that S. miltiorrhiza displays effective activity against C. albicans in vitro and merits further investigation to treat C. albicans-associated infections.

Antifungal Synergy of Theaflavin and Epicatechin Combinations Against Candida albicans

  • Betts, Jonathan W.;Wareham, David W.;Haswell, Stephen J.;Kelly, Stephen M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1322-1326
    • /
    • 2013
  • New antifungal agents are required to compensate for the increase in resistance to standard antifungal agents of Candida albicans, which is an important opportunistic fungal pathogen that causes minor infections in many individuals but very serious infections in those who are immune-compromised. In this study, combinations of theaflavin and epicatechin are investigated as potential antifungal agents and also to establish whether antifungal synergy exists between these two readily accessible and cost-effective polyphenols isolated from black and green tea. The results of disc diffusion assays showed stronger antibacterial activity of theaflavin:epicatechin combinations against C. albicans NCTC 3255 and NCTC 3179, than that of theaflavin alone. Minimum inhibitory concentrations (MICs) of 1,024 ${\mu}g/ml$ with theaflavin and 128-256 ${\mu}g/ml$ with theaflavin:epicatechin combinations were found. The fractional inhibitory concentration indexes were calculated, and the synergy between theaflavin and epicatechin against both isolates of C. albicans was confirmed. Theaflavin:epicatechin combinations show real potential for future use as a treatment for infections caused by C. albicans.