• Title/Summary/Keyword: fungal diseases

Search Result 346, Processing Time 0.03 seconds

Fumonisin Production by Field Isolates of the Gibberella fujikuroi Species Complex and Fusarium commune Obtained from Rice and Corn in Korea (우리나라 벼와 옥수수로부터 분리한 Gibberella fujikuroi 종복합체와 Fusarium commune 소속 균주의 푸모니신 생성능)

  • Lee, Soo-Hyung;Kim, Ji-Hye;Son, Seung-Wan;Lee, Theresa;Yun, Sung-Hwan
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.310-316
    • /
    • 2012
  • Gibberellea fujikuroi species (Gf) complex comprises at least 15 species, most of which not only causes serious plant diseases, but also produces mycotoxins including fumonisins. Here, we focused on the abilities of the field isolates belonging to the Gf complex associated with rice and corn, respectively in Korea to produce fumonisin, all of which were confirmed to carry FUM1, the polyketide synthase gene essential for fumonisin biosynthesis. A total of 88 Gf complex isolates (55 F. fujikuroi, 10 F. verticillioides, 20 F. proliferatum, 2 F. subglutinans, and 1 F. concentricum), and 4 isolates of F. commune, which is a non-member of Gf complex, were grown on rice substrate and determined for their production levels of fumonisins by a HPLC method. Most isolates of F. verticillioides and F. proliferatum, regardless of host origins, produced fumonisin $B_1$ and $B_2$ at diverse ranges of levels ($0.5-2,686.4{\mu}g/g$, and $0.7-1,497.6{\mu}g/g$, respectively). In contrast, all the isolates of F. fujikuroi and other Fusarium species examined produced no fumonisins or only trace amounts ($<10{\mu}g/g$) of fumonisins. Interestingly, the frequencies of relatively high fumonisin-producers among the F. proliferatum and F. fujikuroi isolates derived from corn were higher than those among the fungal isolates from rice. In addition, it is a first report demonstrating the ability of the FUM1-carrying F. commune isolates from rice to produce fumonisins.

Suppression Effect and Mechanism of Citrus Scab in the Citrus Pre-inoculated with Rhizobacterial Strains (근권세균을 전 접종한 감귤에서 감귤 더뎅이병 억제 효과 및 기작)

  • Kim, So-Yeon;Hyun, Jae-Wook;Jeun, Yong-Chull
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.302-310
    • /
    • 2011
  • Elsinoe fawcettii is one of major pathogenic fungi which cause citrus scab diseases, resulting in fruit blemishes that reduce the economic value of fruit. By increasing interest to safe products of crops, the alternative methods of disease control is highly required. We investigated whether the 215 bacterial strains isolated from Jeju Island possess antifungal effect or suppression effect on the symptom development by Elsinoe fawcettii on citrus. Among them, three bacterial strains THJ 609-3, MRL408-3, and TRH423-3 that exhibited antifungal capacity against Elsinoe fawcettii were selected. To illustrate the disease suppression mechanism, pre-inoculation with the selected bacterial strains was carried out whether could suppress the citrus crab on the leaves. The observation with a fluorescence microscope revealed that the selected bacteria could decrease the number of fungal spores. The ratio of germ tube formation was also decreased by the selected bacterial strains at one day after fungus challenge. The strain THJ 609-3 was identified as Pseudomonas putida as a result of analyzing the internal transcript spaces of the rhizobacterial rDNA. The strains MRL 408-3 and TRH 423-3 were identified as Burkholderia gladioli. Our results may be valuable when the selected rhizobacterial strains used as the environment-friendly microbe for biological control on citrus scab caused by Elsinoe fawcettii.

Characterization of Bacillus amyloliquefaciens DA12 Showing Potent Antifungal Activity against Mycotoxigenic Fusarium Species

  • Lee, Theresa;Park, Dami;Kim, Kihyun;Lim, Seong Mi;Yu, Nan Hee;Kim, Sosoo;Kim, Hwang-Yong;Jung, Kyu Seok;Jang, Ja Yeong;Park, Jong-Chul;Ham, Hyeonheui;Lee, Soohyung;Hong, Sung Kee;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.499-507
    • /
    • 2017
  • In an attempt to develop a biological control agent against mycotoxigenic Fusarium species, we isolated Bacillus amyloliquefaciens strain DA12 from soil and explored its antimicrobial activities. DA12 was active against the growth of mycotoxigenic F. asiaticum, F. graminearum, F. proliferatum, and F. verticillioides both in vitro and in planta (maize). Further screening using dual culture extended the activity range of strain DA12 against other fungal pathogens including Botrytis cinerea, Colletotrichum coccodes, Endothia parasitica, Fusarium oxysporum, Raffaelea quercus-mongolicae, and Rhizoctonia solani. The butanol extract of the culture filtrate of B. amyloliquefaciens DA12 highly inhibited the germination of F. graminearum macroconidia with inhibition rate 83% at a concentration of $31.3{\mu}g/ml$ and 100% at a concentration of $250{\mu}g/ml$. The antifungal metabolite from the butanol extract was identified as iturin A by thin layer chromatography-bioautography. In addition, volatile organic compounds produced by DA12 were able to inhibit mycelial growth of various phytopathogenic fungi. The volatile compounds were identified as 2-heptanone, 5-methyl heptanone and 6-methyl heptanone by gas chromatography-mass spectrometry (GC-MS) analysis. These results indicate that the antagonistic activity of Bacillus amyloliquefaciens DA12 was attributable to iturin A and volatile heptanones, and the strain could be used as a biocontrol agent to reduce the development of Fusarium diseases and mycotoxin contamination of crops.

Identification and Phylogenetic Analysis of Culturable Bacteria in the Bioareosol from Several Environments (환경 유형에 따른 바이오에어로졸 중 배양성 세균 동정 및 계통분석)

  • Lee, Siwon;Chung, Hyen-Mi;Park, Su Jeong;Choe, Byeol;Kim, Ji Hye;Lee, Bo-Ram;Joo, Youn-Lee;Kwon, Oh Sang;Jheong, Weon Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.142-149
    • /
    • 2015
  • Bioaerosols are comprised of particles 0.02-100 μm in size that originate in natural and artificial environments, and as a result of human activities. They consist of microorganisms including viruses, bacteria, fungi, and protozoa; fungal spores; microbial toxins; pollen; plant or animal material; expectorated liquid from humans; and glucans (peptidoglycan and β-glucan). Bioaerosols can cause respiratory and other diseases in humans and animals. In this study, bioaerosol samples acquired from agricultural sources, livestock, a sewage treatment plant, a beach, and a pristine area were analyzed to identify and phylogenetically characterize culturable microorganisms. The isolated bacteria exhibited regional differences, with different species dominating. However, Bacillus cereus was isolated in all samples, with a total of 31 strains isolated from all areas, and Acinetobacter baumannii was isolated from an indoor poultry farm. In addition, bacteria determined to be of novel genus or species of the genera Domibacillus, Chryceobacterium, Nocardioides and family Comamonadaceae were isolated from the agricultural, livestock and beach environments.

Purification and characterization of antifungal compounds produced by Bacillus subtilis KS1 (Bacillus subtilis KS1이 생산하는 항진균물질의 정제 및 특성)

  • Ryoo, Sung-Woo;Maeng, Hack-Young;Maeng, Pil-Jae
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.293-304
    • /
    • 1996
  • A bacterial strain, KSl, possessing strong antifungal activity was isolated from soil samples of ginseng fields and identified as Bacillus subtilis. In greenhouse test, the culture filtrate of B. subtilis KS1 showed strong protective effect against several fungal diseases of agricultural plants such as cucumber gray mold and wheat leaf rust. In addition, the crude butanol fraction of the culture filtrate exhibited antagonistic effect against several fungi including plant or human pathogens, such as Botrytis maydis, Chytridium lagenarium and Candida albicans. The antifungal compound, SW1, produced by B. subtilis KS1 was purified through consecutive chromatographic separations on a pep-RPC column and a ${\mu}$ Bondapak $C_{18}$ reverse phase column. Temperature and pH showed little effect on the stability of the compound in the ranges $-20-121^{\circ}C$ and pH 4.0-10.0, respectively. The composition and structural characteristics of SW1 were analysed by HPLC and by $^1H-,\;^1H-^1H-COSY$, NOESY, COSY-NOESY and HOHAHA NMR spectroscopy, respectively, which revealed that the compound belongs to iturin A, a typical cyclic antifungal compound produced by B. subtilis. In contrast to the previously reported iturin A compounds which have one or no $-CH_3$ side chain in the hydrophobic hydrocarbon chain of ${\beta}-amino$ acids, SW1 was shown to have a ${\beta}-amino$ acid containing 12-carbon skeleton with two $-CH_3$ side chains.

  • PDF

IAA-Producing Penicillium sp. NICS01 Triggers Plant Growth and Suppresses Fusarium sp.-Induced Oxidative Stress in Sesame (Sesamum indicum L.)

  • Radhakrishnan, Ramalingam;Shim, Kang-Bo;Lee, Byeong-Won;Hwang, Chung-Dong;Pae, Suk-Bok;Park, Chang-Hwan;Kim, Sung-Up;Lee, Choon-Ki;Baek, In-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.856-863
    • /
    • 2013
  • Application of rhizospheric fungi is an effective and environmentally friendly method of improving plant growth and controlling many plant diseases. The current study was aimed to identify phytohormone-producing fungi from soil, to understand their roles in sesame plant growth, and to control Fusarium disease. Three predominant fungi (PNF1, PNF2, and PNF3) isolated from the rhizospheric soil of peanut plants were screened for their growth-promoting efficiency on sesame seedlings. Among these isolates, PNF2 significantly increased the shoot length and fresh weight of seedlings compared with controls. Analysis of the fungal culture filtrate showed a higher concentration of indole acetic acid in PNF2 than in the other isolates. PNF2 was identified as Penicillium sp. on the basis of phylogenetic analysis of ITS sequence similarity. The in vitro biocontrol activity of Penicillium sp. against Fusarium sp. was exhibited by a 49% inhibition of mycelial growth in a dual culture bioassay and by hyphal injuries as observed by scanning electron microscopy. In addition, greenhouse experiments revealed that Fusarium inhibited growth in sesame plants by damaging lipid membranes and reducing protein content. Co-cultivation with Penicillium sp. mitigated Fusarium-induced oxidative stress in sesame plants by limiting membrane lipid peroxidation, and by increasing the protein concentration, levels of antioxidants such as total polyphenols, and peroxidase and polyphenoloxidase activities. Thus, our findings suggest that Penicillium sp. is a potent plant growth-promoting fungus that has the ability to ameliorate damage caused by Fusarium infection in sesame cultivation.

Evaluation of Disease Resistance of a Leaffolder-resistant (Cry1Ac1) Rice Event and Gene Transfer to Plant Pathogens (혹명나방 저항성벼(Cry1Ac1)의 병해 저항성 및 병원균으로의 유전자 전이)

  • Nam, Hyo-Song;Shim, Hong-Sik;Yu, Sang-Mi;Lee, Se-Won;Kwon, Soon-Jong;Kim, Myung-Kon;Lee, Yong-Hoon
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.202-208
    • /
    • 2009
  • The genetically modified leaffolder-resistant (Cry1Ac1) rice plant was evaluated for the changes of resistance by comparing the occurrence of major diseases with a japonica type Korean rice variety, Nakdong which was the mother plant of the transgenic rice event, in greenhouse and field conditions. There was no difference in the occurrence of sheath blight and Helminthosporium blight between the two varieties in the fields. We couldn't find any difference of resistance for fungal blast and bacterial leaf blight by artificial inoculation in greenhouse. There was also no difference in the susceptibility to sheath blight in artificial inoculation tests confirming the results in the fields. The possibility of gene transfer of Bar and Cry1Ac1 from the genetically modified rice plant to naturally infected pathogens such as Fusarium moniliforme and Pyricularia oryzae in the field conditions was tested by PCR. And the possible transfer of those genes by continuous inoculation of Xanthomonas oryzae pv. oryzae and Rhizoctonia solani was also tested. However, we couldn't find any possibility of transfer of the genes in natural and artificial conditions.

Rice Plant Growth Promotion and Induced Systemic Resistance Against Rice strip tenuivirus by a Selected PGPR, Bacillus amyloliquefaciens (PGPR균 EXTN-1 처리에 의한 벼의 생육촉진 및 벼줄무늬잎마름병(RSV)에 대한 유도저항성 발현)

  • Park, Jin-Woo;Park, Kyung-Seok;Lee, Key-Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.485-489
    • /
    • 2011
  • In previous reports, the treatment of Bacillus amyloliquefaciens strain EXTN-1 showed a broad diseasecontrolling spectrum to the plant diseases caused by viral, bacterial, and fungal pathogens as well as the promotion of plant growth. In mechanisms of EXTN-1, treatment of EXTN-1 increased oxidative burst in early stage and induced the expression of resistance genes, PR-1a, PDF1.2. Mechanism involved in induced systemic resistance by EXTN-1 was revealed as simultaneous activation of SA and JA or ethylene metabolic pathways. The purpose of this study was to determine whether B. amyloliquefaciens EXTN-1 has a similar effect on rice plant against Rice stripe tenuivirus (RSV) under greenhouse conditions. When rice seeds were soaked in B. amyloliquefaciens strain EXTN-1, rice plants showed significant systemic resistance against RSV as well as promoted growth. In the case of plant growth, in 30-day old plants treated with B. amyloliquefaciens EXTN-1, the heights, weights, and lengths of roots increased by 12.6%, 9.8%, and 16.0%, respectively confirming the effects of PGPR. When the induced systemic resistance to RSV was examined, in 20-day old plants were treated with B. amyloliquefaciens EXTN-1, the heights, weights, and lengths of roots increased by 8.4%, 10.9%, and 4.8%, respectively compared to the control. Induced systemic resistance was more prominent in susceptible cultivars - Chucheong and Ilpum compared to the resistant cultivar, Nakdong.

A Duplex PCR for Detection of Phytophthora katsurae Causing Chestnut Ink Disease (밤나무 잉크병균, Phytophthora katsurae의 검출을 위한 Duplex PCR)

  • Lee, Dong-Hyeon;Lee, Sun-Keun;Kim, Hye-Jeong;Lee, Sang-Hyun;Lee, Sang-Yong;Lee, Jong-Kyu
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • Phytophthora katsurae is a fungal pathogen responsible for chestnut ink disease. We designed two duplex primer sets (SOPC 1F/1R+KatI 3F/5R, SOPC 1-1F/1-1R+KatI 3F/5R) to detect P. katsurae. SOPC 1F/1R and SOPC 1-1F/1-1R primer pairs were designed for sequence characteristic amplification regions (SCAR) marker, and KatI 3F/5R primer pair was used for P. katsurae-specific primer designed from internal transcribed spacer (ITS) region. To assess the sensitivity of duplex PCR, genomic DNA was serially diluted 10-fold to make the final concentrations from 1 mg/ml to 1 ng/ml. The sensitivity for two primer sets were 1 ${\mu}g/ml$ and 100 ng/ml, respectively. To find detection limits for zoospores of P. katsurae, each zoospore suspension was serially diluted 10-fold to make the final concentrations from $1{\times}10^6$ to $1{\times}10^2$ cells/ml, and then DNA was extracted. The limits of detection for all of two primer sets were $1{\times}10^5$ cells/ml. All of two primer sets were specific to P. katsurae in PCR detection and did not produce any P. katsurae-specific PCR amplicons from other 16 Phytophthora species used as the control. This study shows that duplex PCR using two primer sets might be a useful tool for rapid and efficient detection of P. katsurae.

Human and Animal Disease Biomarkers and Biomonitoring of Deoxynivalenol and Related Fungal Metabolites as Cereal and Feed Contaminants (곡물 및 사료오염 데옥시니발레놀 및 대사체에 의한 인축질환 연계 생체지표 및 바이오모니터링)

  • Moon, Yuseok;Kim, Dongwook
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • Deoxynivalenol (DON) and related trichothecene mycotoxins are extensively distributed in the cereal-based food and feed stuffs worldwide. Recent climate changes and global grain trade increased chance of exposure to more DON and related toxic metabolites in poorly managed production systems. Monitoring the biological and environmental exposures to the toxins are crucial in protecting human and animals from toxicities of the hazardous contaminants in food or feeds. Exposure biomarkers including urine DON itself are prone to shift to less harmful metabolites by intestinal microbiota and liver metabolic enzymes. De-epoxyfication of DON by gut microbes such as Eubacterium strain BBSH 797 and Eubacterium sp. DSM 11798 leads to more fecal secretion of DOM-1. By contrast, most of plant-derived DON-glucoside is also easily catabolized to free DON by gut microbes, which produces more burden to body. Phase 2 hepatic metabolism also contributes to the glucuronidation of DON, which can be useful urine biomarkers. However, chemical modification could be very typical depending on the anthropologic or genetic background, luminal bacteria, and hepatic metabolic enzyme susceptibility to the toxins in the diet. After toxin exposure, effect biomarkers are also important in estimating the linkage and mechanisms of foodborne diseases in human and animal population. Most prominent adverse effects are demonstrated in the DON-induced immunological and behavioral disorders. For instance, acutely elevated interleukin-8 from insulted gut exposed to dietaty DON is a dominant clinical biomarker in human and animals. Moreover, subchronic exposure to the toxins is associated with high levels of serum IgA, a biological mediator of IgA nephritis. In particular, anorexia monitoring using mouse models are recently developed to monitor the biological activities of DON-induced feed refusal. It is also mechanistically linked to alteration of serotoin and peptide YY, which are promising biomarkers of neurological disorders by the toxins. As animal-alternative biomonitoring, huamn enterocyte-based assay has been developed and more realistic gut mimetic models would be useful in monitoring the effect biomarkers in resposne to toxic contaminants in the future investigations.