DOI QR코드

DOI QR Code

A Duplex PCR for Detection of Phytophthora katsurae Causing Chestnut Ink Disease

밤나무 잉크병균, Phytophthora katsurae의 검출을 위한 Duplex PCR

  • Lee, Dong-Hyeon (Department of Forest Environment Protection, Kangwon National University) ;
  • Lee, Sun-Keun (Department of Forest Environment Protection, Kangwon National University) ;
  • Kim, Hye-Jeong (Department of Forest Environment Protection, Kangwon National University) ;
  • Lee, Sang-Hyun (Division of Forest Insects and Diseases, Korea Forest Research Institute) ;
  • Lee, Sang-Yong (Department of Forest Environment Protection, Kangwon National University) ;
  • Lee, Jong-Kyu (Department of Forest Environment Protection, Kangwon National University)
  • 이동현 (강원대학교 산림환경보호학과) ;
  • 이선근 (강원대학교 산림환경보호학과) ;
  • 김혜정 (강원대학교 산림환경보호학과) ;
  • 이상현 (국립산림과학원 산림병해충과) ;
  • 이상용 (강원대학교 산림환경보호학과) ;
  • 이종규 (강원대학교 산림환경보호학과)
  • Received : 2012.05.31
  • Accepted : 2012.06.08
  • Published : 2012.06.30

Abstract

Phytophthora katsurae is a fungal pathogen responsible for chestnut ink disease. We designed two duplex primer sets (SOPC 1F/1R+KatI 3F/5R, SOPC 1-1F/1-1R+KatI 3F/5R) to detect P. katsurae. SOPC 1F/1R and SOPC 1-1F/1-1R primer pairs were designed for sequence characteristic amplification regions (SCAR) marker, and KatI 3F/5R primer pair was used for P. katsurae-specific primer designed from internal transcribed spacer (ITS) region. To assess the sensitivity of duplex PCR, genomic DNA was serially diluted 10-fold to make the final concentrations from 1 mg/ml to 1 ng/ml. The sensitivity for two primer sets were 1 ${\mu}g/ml$ and 100 ng/ml, respectively. To find detection limits for zoospores of P. katsurae, each zoospore suspension was serially diluted 10-fold to make the final concentrations from $1{\times}10^6$ to $1{\times}10^2$ cells/ml, and then DNA was extracted. The limits of detection for all of two primer sets were $1{\times}10^5$ cells/ml. All of two primer sets were specific to P. katsurae in PCR detection and did not produce any P. katsurae-specific PCR amplicons from other 16 Phytophthora species used as the control. This study shows that duplex PCR using two primer sets might be a useful tool for rapid and efficient detection of P. katsurae.

Phytophthora katsurae는 밤나무 잉크병의 원인이 되는 병원성 균류이다. P. katsurae를 검출하기 위하여 2개의 duplex PCR primer set을 제작하였다(SOPC 1F/1R+KatI 3F/5R, SOPC 1-1F/1-1R+KatI 3F/5R). SOPC 1F/1R과 SOPC 1-1F/1-1R primer pair는 sequence characteristic amplification regions(SCAR)를 이용하여 제작하였고, KatI 3F/5R primer pair는 internal transcribed spacer(ITS) 부위로부터 제작하였다. 추출한 genomic DNA를 1 mg/ml에서 1 ng/ml까지 10배씩 순차적으로 희석하여 균사량에 따른 Duplex PCR의 민감도를 확인한 결과, 2개의 primer set은 각각 1 ${\mu}g/ml$와 100 ng/ml까지 검출이 가능하였다. 유주포자를 $1{\times}10^6$부터 $1{\times}10^2$ cells/ml까지 10배씩 순차적으로 희석하고 genomic DNA를 추출하여 P. katsurae의 유주포자량에 의한 검출 한계를 확인한 결과, 2개의 primer set 모두 $1{\times}10^5$ cells/ml까지 검출할 수 있었다. 각각의 primer set은 PCR 검출을 실시하였을 때 P. katsurae 균주에서만 PCR 산물이 증폭된 반면에, Phytophthora 16종에서는 P. katsurae에 특이적인 PCR 증폭산물이 생성되지 않았다. 따라서, 2개의 primer set을 이용한 Duplex PCR은 P. katsurae의 신속하고 효과적인 검출에 유용하게 활용될 수 있을 것이다.

Keywords

References

  1. Andrea, V. and Anna, M. V. 2001. Ink disease in chestnuts: impact on the European chestnut. For. Snow Landsc. Res. 76: 345-350.
  2. Bonants, P., Hagenaar-de Weerdt, M., van Gent-Pelzer, M., Lacourt, I., Cooke, D. E. L. and Duncan, J. M. 1997. Detection and identification of Phytophthora fragarie Hickman by the polymerase chain reaction. Eur. J. Plant Pathol. 103: 345-355. https://doi.org/10.1023/A:1008640227432
  3. Boutard, A. 2001. The western chestnut: More information on chestnuts and ink disease. The Western Chestnut Growers Assn. Inc. 3: 7-11.
  4. DE Merlier, D., Chandelier, A., Debruxelles, N., Noldus, M., Laurent, F., Dufays, E. and Claessens, H. 2005. Characterization of alder Phytophothora isolates from Wallonia and development of SCAR primer for their specific detection. J. Phytopathol. 153: 99-107. https://doi.org/10.1111/j.1439-0434.2005.00936.x
  5. Elnifro, E. M., Ashshi, A. M., Cooper, R. J. and Klapper, P. E. 2000. Multiplex PCR: optimization and application in dignostic virology. Clin. Microbiol. Rev. 13: 559-570. https://doi.org/10.1128/CMR.13.4.559-570.2000
  6. Ioos, R., Husson, C., Andrieux, A. and Frey, P. 2005. SCAR-based PCR primers to detect the hybrid pathogen Phytophthora alni and its subspecies causing alder disease in Europe. Eur. J. Plant Pathol. 112: 323-335. https://doi.org/10.1007/s10658-005-6233-2
  7. Jyan, M. H., Huang, L. C., Ann, P. J. and Liou, R. F. 2002. Rapid detection of Phytophthora infestans by PCR. Plant Pathol. Bull. 11: 45-56.
  8. Kim, M. J., Kim, S. C. and Kim, S. C. 2006. Chestnut cultivars in Korea. Korea Forest Research Institute, Seoul, Korea. 197 pp. (In Korean)
  9. Kroon, L. P. N. M., Bakker, F. T., Van den bosch, G. B. M., Bonants, P. J. M. and Flier, W. G. 2004. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet. Biol. 41: 766-782. https://doi.org/10.1016/j.fgb.2004.03.007
  10. Lee, D. H. 2010. Detection of Phytophthora katsurae using PCR-techniques. Master's thesis. Kangwon National University, Chuncheon, Korea. (In Korean)
  11. Lee, J. K., Jo, J. W., Shin, K. C., Lee, S. H. and Lee, S. Y. 2009. Isolation, identification and characterization of Phytophthora katsurae, causing chestnut ink disease in Korea. Plant Pathology J. 25: 121-127. https://doi.org/10.5423/PPJ.2009.25.2.121
  12. Li, Y., Minerdi, D., Garibaldi, A. and Gullino, M. L. 2009. Molecular detection of Phytophthora cryptogea on Calendula officinalis and Gerbera jamesonii artificially inoculated with zoospores. J. Phytopathol. 157: 438-445. https://doi.org/10.1111/j.1439-0434.2008.01512.x
  13. Meng, J. and Wang, Y. 2010. Rapid detection of Phytophthora nicotianae in infected tobacco tissue and soil samples based on its YPT 1 gene. J. Phytopathol. 158: 1-7. https://doi.org/10.1111/j.1439-0434.2009.01548.x
  14. Morot-Bizot, S. C., Talon, R. and Leroy, S. 2004. Development of a multiplex PCR for the identification of Staphylococcus genus and four Staphylococcal species isolated from food. J. Appl. Microbiol. 97: 1087-1094. https://doi.org/10.1111/j.1365-2672.2004.02399.x
  15. Oh, E. S., Lee, J. K., Lee, S. H. and Kim, K. H. 2007. Chestnut ink disease caused by Phytophthora katsurae. J. For. Sci. 23: 65-71. (In Korean)
  16. Schubert, R., Bahnweg, G., Nechwatal, J., Jung, T., Cooke, D. E. L., Duncan, J. M., Muller-Starck, G., Langebartels, G., Sanderman, Jr. H. and Obwald, W. 1999. Detection and quantification of Phytophthora species which are associated with root-rot disease in European deciduous forests by species-specific polymerase chain reaction. Eur. J. Plant Pathol. 29: 169-188. https://doi.org/10.1046/j.1439-0329.1999.00141.x
  17. Shen, G., Wang, Y. C., Zhang, W. L. and Zheng, X. B. 2005. Development of a PCR assay for the molecular detection of Phytophthora boehmeriae in infected cotton. J. Phytopathol. 153: 291-296. https://doi.org/10.1111/j.1439-0434.2005.00971.x
  18. Vannini, A., Natili, G., Anselim, N., Montaghi, A. and Vettraino, A. M. 2010. Distribution and gradient analysis of ink disease in chestnut forests. For. Path. 40: 73-86. https://doi.org/10.1111/j.1439-0329.2009.00609.x
  19. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols : A guide to methods and application. Academic Press, New York, USA. pp. 315-321.
  20. Winton, L. M. and Hansen, E. M. 2001. Molecular diagnosis of Phytophthora lateralis in tree, water, and Foliage baits using multiplex polymerase chain reaction. For. Path. 31: 275-283. https://doi.org/10.1046/j.1439-0329.2001.00251.x