• Title/Summary/Keyword: fungal diseases

Search Result 347, Processing Time 0.029 seconds

Screening of Cyanobacteria (Blue-Green algae) from Rice Paddy Soil for Anti-fungal Activity against Plant Pathogenic Fungi

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.34 no.3
    • /
    • pp.138-142
    • /
    • 2006
  • Soil cyanobacteria isolated from the rice paddy fields of 10 different locations across Korea were evaluated by agar plate diffusion test for antifungal activity. Aqueous, petroleum ether, and methanol extracts from one hundred and forty two cyanobacterial strains belonging to the 14 genera were examined for antifungal properties against seven phytopathogenic fungi causing diseases in hot pepper (Capsicum annuum L). Of total cyanobacteria, nine cyanobacteria (6.34%) exhibited antifungal effects. The nine cyanobacteria selected with positive antifungal activities were two species of Oscillatoria, two of Anabaena, three of Nostoc, one of Nodularia, and one of Calothrix. Alternaria alternata and Botrytis cinerea were inhibited by nine and eight species of cyanobacteria, respectively. Rhizopus stolonifer was suppressed by only methanol extract of Nostoc commune FK-103. In particular, Nostoc commune FK-103 and Oscillatoria tenuis FK-109 showed strong antifungal activities against Phytophthora capsici. Their antifungal activity at the late exponential growth phase is related to the growth temperature and not associated with the growth parameters such as cell biomass and $chlorophyll-{\alpha}$ concentration. The high inhibition levels of antibiotics were 22.5 and 31.8 mm for N. commune FK-103 and O. tenuis FK-109, respectively. The optimal temperature for antibiotic productivity was $35^{\circ}C$.

Invesigation of Functional Roles of a Protein Kinase in a Fungal Plant Pathogen, Magnaporthe oryzae

  • Han, Joon-Hee;Shin, Jong-Hwan;Kim, Kyoung Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.43-43
    • /
    • 2014
  • The rice blast disease caused by of Magnaporthe oryzae is one of the most destructive diseases of rice. By the microarray analysis, we profiled expression changes of genes during conidiation and found out many putative genes that are up-regulated. Among those, we first selected MGG_06399 encoding a dual-specificity tyrosine-regulated protein kinase (DYRK), homologous to YAK1 in yeast. To investigate functional roles of MoYAK1, We made ${\Delta}Moyak1$ mutants by homology dependent gene replacement. The deletion mutant showed a remarkable reduction in conidiation and produced abnormally shaped conidia smaller than those of wild type. The conidia form ${\Delta}Moyak1$ were able to develop a germ tube, but failed to form apppressoria on a hydrophobic coverslip. The ${\Delta}Moyak1$ formed appressria on a hydrophobic cover slip when exogenous cAMP was induced, but the appressoria shape was abnormal. The ${\Delta}Moyak1$ also formed appressoria abberent in shape on onion epidermis and rice sheaths and failed to penetrate the surface of the plants. These data indicate that MoYAK1 is associated with cAMP/PKA pathway and important for conidiation, appressorial formation and pathogenic development in Magnaporthe oryzae. Detailed characterization of MoYAK1 will be presented.

  • PDF

A CLINICAL CASE OF UNILATERAL MAXILLARY DEFECT RECONSTRUCTION USING NASOLABIAL FLAP (비순 피판을 이용한 상악골 편측 괴사환자의 치험례)

  • Lee, Eun-Young;Kim, Kyoung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.167-172
    • /
    • 2009
  • The maxilla rarely undergoes necrosis due to its rich vascularity. Maxillary necrosis can occur due to bacterial infections such as osteomyelitis. viral infections such as herpes zoster and fungal infections such as mucormycosis, aspergillosis etc. Herpes zoster is a common viral infection, the oral soft tissue manifestations of which are widely known and recognized. Extremely rare complications such as osteonecrosis, and secondary osteomyelitis in maxilla were observed. But, reports of spontaneous tooth exfoliation and jaw osteonecrosis following herpes zoster infection in the distribution of the trigeminal nerve are extremely rare in the literature. We report a case of maxillary necrosis by herpes zoster in an uncontrolled diabetic patient. There was extensive necrosis of the buccal and palatal mucoperiosteum and exposure of the alveolar bone. This patient was successfully treated using a removal of necrotic bone and nasolabial flap. We briefly discuss different diseases which can lead to maxillary necrosis and a review. Analysis of the pathogenesis of herpes zoster and bone necrosis are discussed.

First Report of Fruit Rot Caused by Fusarium decemcellulare in Apples in Korea

  • Lee, Seung-Yeol;Park, Su-Jin;Lee, Jae-Jin;Back, Chang-Gi;Ten, Leonid N.;Kang, In-Kyu;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.45 no.1
    • /
    • pp.54-62
    • /
    • 2017
  • In 2014, abnormal brown spots were observed on Hongro apples in fields in Gyeongsangbuk-do Province and during low-temperature storage. The spots were round, blight brown, and different from the symptoms of previously reported apple diseases. A fungal pathogen was isolated and cultured on potato dextrose agar, and it was morphologically similar to Fusarium decemcellulare. A pathogenicity test showed the same brown spots on both wounded and unwounded Hongro and Fuji apple cultivars. RPB1 and RPB2 sequences of F. decemcellulare KNU-GC01 matched with those of F. decemcellulare NRRL 13412 (98.3% and 97.6% similarities, respectively); both strains clustered together in the phylogenetic tree, indicating their close relationship at the species level. Therefore, F. decemcellulare is a newly reported pathogen that causes brown spots on apples in Korea.

Screening of Rhizobacteria for Biological Control of Cucumber Root and Crown Rot Caused by Phytophthora drechsleri

  • Maleki, Mojdeh;Mokhtarnejad, Lachin;Mostafaee, Somayyeh
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.78-84
    • /
    • 2011
  • Antagonistic rhizobacteria, more specifically fluorescent pseudomonads and certain species of Bacillus, are known as biocontrol agents of fungal root diseases of agronomic crops. In this study, 144 bacteria were isolated from cucumber rhizosphere and screened as potential biological control agents against Phytophthora drechsleri, the causal agent of cucumber root rot, in vitro condition. Non-volatile compounds of 23 isolates showed noticeable inhibition zone (> 30%) against P. drechsleri, whereas volatile compounds of 7 isolates could prevent more than 30% of the mycelial growth of the fungus. All promising isolates, except of Pseudomonas flourescens V69, promoted significantly plant growth under in vitro condition. P. flourescens CV69 and V11 exhibited the highest colonization on the root. Results of the greenhouse studies showed that a reduction in disease incidence by use of some strains, and particularly use of strains CV6 and V11 as a soil treatment, exhibited a reduction in disease incidence so that suppressed disease by 85.71 and 69.39% respectively. Pseudomonas flourescens CV6 significantly suppressed disease in comparison to Ridomil fungicide. The use of mixture bacterial strains in the soil inoculated by the fungus resulting in falling down the most of the plants which didn't show significant difference with infected control soils without bacteria.

Inhibitory Effect of Moriniafungin Produced by Setosphaeria rostrata F3736 on the Development of Rhizopus Rot

  • Park, Min Young;Park, So Jung;Kim, Jae-Jin;Lee, Dong Ho;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.570-578
    • /
    • 2020
  • Rhizopus rot is a serious postharvest disease of various crops caused by Rhizopus spp. and controlled mainly by synthetic fungicides. We detected the antifungal activity of a culture extract of Setosphaeria rostrata F3736 against Rhizopus oryzae. The active ingredient was identified as moriniafungin, a known sordarin derivative, which showed minimum inhibitory concentrations of 1-8 ㎍/ml against Colletotrichum spp. and 0.03-0.13 ㎍/ml against Rhizopus spp. in vitro. Moriniafungin showed protective control efficacies against Rhizopus rot on apple and peach fruits. Treatment with 25 ㎍/ml moriniafungin delimited the lesion diameter significantly by 100% on R. oryzae-inoculated apple fruits compared with the non-treated control. Treatment with 0.04 ㎍/ml of moriniafungin reduced the lesion diameter significantly by 56.45%, and treatment with higher concentrations of 0.2-25 ㎍/ml reduced the lesion diameter by 70-90% on Rhizopus stolonifer var. stolonifer-inoculated peach fruit. These results suggest moriniafungin has potential as a control agent of postharvest diseases caused by Rhizopus spp.

Isolation and Characterization of an Antifungal and Plant Growth-Promoting Microbe

  • Park, Se Won;Yang, Hee-Jong;Seo, Ji Won;Kim, Jinwon;Jeong, Su-ji;Ha, Gwangsu;Ryu, Myeong Seon;Yang, Hee Gun;Jeong, Do-Youn;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.441-454
    • /
    • 2021
  • Fungal diseases including anthracnose, stem rot, blight, wilting, and root rot of crops are caused by phytopathogens such as Colletotrichum species, Sclerotinia sclerotiorum, Phytophthora species, and Fusarium oxysporum and F. solani which threaten the production of chili pepper. In this study, to identify biological control agents (BCAs) of phytopathogenic fungi, potentially useful Bacillus species were isolated from the field soils. We screened out five Bacillus strains with antagonistic capacity that are efficiently inhibiting the growth of phytopathogenic fungi. Bacillus species were characterized by the production of extracellular enzymes, siderophores, and indole-3-acetic acid (IAA). Furthermore, the influence of bacterial strains on the plant growth promoting activity and seedling vigor index were assessed using Brassica juncea as a model plant. Inoculation with Bacillus subtilis SRCM 121379 significantly increased the length of B. juncea shoots and roots by 45.6% and 52.0%, respectively. Among the bacterial isolates, Bacillus subtilis SRCM 121379 showed the superior enzyme activities, antagonistic capacity and plant growth promoting effects. Based on the experimental results, Bacillus subtilis SRCM 121379 (GenBank accession no. NR027552) was finally selected as a BCA candidate.

Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens

  • Park, Young-Hwan;Mishra, Ratnesh Chandra;Yoon, Sunkyung;Kim, Hoki;Park, Changho;Seo, Sang-Tae;Bae, Hanhong
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.408-420
    • /
    • 2019
  • Background: Ginseng (Panax ginseng Meyer) is an invaluable medicinal plant containing various bioactive metabolites (e.g., ginsenosides). Owing to its long cultivation period, ginseng is vulnerable to various biotic constraints. Biological control using endophytes is an important alternative to chemical control. Methods: In this study, endophytic Trichoderma citrinoviride PG87, isolated from mountain-cultivated ginseng, was evaluated for biocontrol activity against six major ginseng pathogens. T. citrinoviride exhibited antagonistic activity with mycoparasitism against all ginseng pathogens, with high endo-1,4-${\beta}$-D-glucanase activity. Results: T. citrinoviride inoculation significantly reduced the disease symptoms caused by Botrytis cinerea and Cylindrocarpon destructans and induced ginsenoside biosynthesis in ginseng plants. T. citrinoviride was formulated as dustable powder and granules. The formulated agents also exhibited significant biocontrol activity and induced ginsenosides production in the controlled environment and mountain area. Conclusion: Our results revealed that T. citrinoviride has great potential as a biological control agent and elicitor of ginsenoside production.

First Report of Botrytis Mold Caused by Botrytis cinerea on Peonies (Paeonia lactiflora Pall.)

  • Kim, Hyo Jeong;Park, Min Young;Ma, Kyung-Cheol;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.279-282
    • /
    • 2020
  • In 2019, symptoms of Botrytis mold on the peony (Paeonia lactiflora Pall.) 'Sarah Bernhardt' were observed during a survey of the commercial greenhouses of Gangjin County, South Korea. The initial symptoms, small brown spots, were observed mainly at the leaf margins. The lesions extended to the interior of leaves forming irregular spots in which abundant conidia developed. Fungal colonies were obtained from surface-sterilized tissue excised from growing edges of the lesions that were transferred to potato dextrose agar. Melanized irregular sclerotia were formed in these colonies after 40 days at 8℃. Molecular phylogeny based on sequences of genes for glyceraldehyde-3-phosphate dehydrogenase, heat-shock protein 60, and RNA polymerase subunit II were highest for the PBC-2 isolate to the type strains of Botrytis cinerea, rather than other Botrytis species associated with peony diseases. Following Koch's postulates, healthy Sarah Bernhardt plants were inoculated with a foliar application of conidial suspensions of the isolate PBC-2. Following incubation under humidity with a 12 hr photoperiod for 7 days, symptoms developed on the leaf margins that were identical to those observed in the greenhouses. This study is the first report of Botrytis blight caused by B. cinerea on peonies grown in commercial greenhouses in South Korea.

Colletotrichum aenigma Associated with Apple Bitter Rot on Newly Bred cv. RubyS Apple

  • Lee, Seung-Yeol;Ten, Leonid N.;Ryu, Jung-Joo;Kang, In-Kyu;Jung, Hee-Young
    • Research in Plant Disease
    • /
    • v.27 no.2
    • /
    • pp.70-75
    • /
    • 2021
  • The abnormal brown sunken lesions were observed on cv. RubyS apple fruits in an orchard located in Gunwi, Gyeongbuk province, Korea. The primary observed symptoms such as small round sunken lesions and small black dots on the symptomatic area were different from the reported apple diseases. The affected apple fruits were sampled and subjected to isolation of the causal agent. Cultural and morphological characteristics of isolated fungal strain, designated KNUF-20GWA4, were similar to that of Colletotrichum spp. Based on multilocus sequence analyses using internal transcribed spacer regions and partial sequences of β-tubulin, glyceraldehyde-3-phosphate dehydrogenase, chitin synthase, and actin genes, strain KNUF-20GWA4 showed 99.2-100% similarities with C. aenigma ICMP 18608 and the isolate clustered together with several other strains of this species in the phylogenetic tree. To our knowledge, this is the first report of bitter rot on apple fruits caused by C. aenigma.