DOI QR코드

DOI QR Code

Screening of Cyanobacteria (Blue-Green algae) from Rice Paddy Soil for Anti-fungal Activity against Plant Pathogenic Fungi

  • Kim, Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
  • Published : 2006.09.30

Abstract

Soil cyanobacteria isolated from the rice paddy fields of 10 different locations across Korea were evaluated by agar plate diffusion test for antifungal activity. Aqueous, petroleum ether, and methanol extracts from one hundred and forty two cyanobacterial strains belonging to the 14 genera were examined for antifungal properties against seven phytopathogenic fungi causing diseases in hot pepper (Capsicum annuum L). Of total cyanobacteria, nine cyanobacteria (6.34%) exhibited antifungal effects. The nine cyanobacteria selected with positive antifungal activities were two species of Oscillatoria, two of Anabaena, three of Nostoc, one of Nodularia, and one of Calothrix. Alternaria alternata and Botrytis cinerea were inhibited by nine and eight species of cyanobacteria, respectively. Rhizopus stolonifer was suppressed by only methanol extract of Nostoc commune FK-103. In particular, Nostoc commune FK-103 and Oscillatoria tenuis FK-109 showed strong antifungal activities against Phytophthora capsici. Their antifungal activity at the late exponential growth phase is related to the growth temperature and not associated with the growth parameters such as cell biomass and $chlorophyll-{\alpha}$ concentration. The high inhibition levels of antibiotics were 22.5 and 31.8 mm for N. commune FK-103 and O. tenuis FK-109, respectively. The optimal temperature for antibiotic productivity was $35^{\circ}C$.

Keywords

References

  1. Allen, M. M. 1968. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 4: 1-13
  2. Bloor, S. and England, R. R. 1989. Antibiotic production by the cyanobacteria Nostoc muscorm. J. Appl. Phycol. 1: 367-372 https://doi.org/10.1007/BF00003474
  3. Bloor, S. and England, R. R. 1991. Elucidation and optimization of the medium constituents controlling antibiotic production by the cyanobacterium Nostoc muscorun. Enzyme Microb. Technol. 13: 76-81 https://doi.org/10.1016/0141-0229(91)90192-D
  4. Cannell, R. J. P., Kellan, S. J., Owasianka, A. M. and Walker, J. M. 1987. Microalgae and cyanobacteria as a source of glucosidase inhibitor. J. Gen. Microbiol. 133: 1701-1705
  5. Cannell, R. J. P. Owasianka, A. M. and Walker, J. M. 1988. Results of a large-scale screening programme to detect antibacterial activity from freshwater algae. Brit. Phycol. J. 23: 41-44 https://doi.org/10.1080/00071618800650051
  6. Cano, M. M. S., Mule, M. C. Z., Cair, G. Z. and Halperin, D. R. 1990. Inhibition of Candida albicans and Staphylococcus aureus by phenolic compound from the terrestrial cyanobacterium Nostoc muscorum. J. Appl. Phycol. 2: 29-81
  7. Carmichael, W. W. 1992. Cyanobacteria secondary metabolites the cyanotoxins. J. Appl. Bacteriol. 72: 445-459 https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
  8. Dodds, W. K., Gudder, D. A. and Mollenhauer, D. 1995. The ecology of Nos toe. J. Phycol. 31: 2-18 https://doi.org/10.1111/j.0022-3646.1995.00002.x
  9. EI-Sheekh, M. M., Osman, M. E. H., Dyab, M. A. and Amer, M. S. 2006. Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environ. Toxicol. Pharmacol. 21: 42-50 https://doi.org/10.1016/j.etap.2005.06.006
  10. Flores, E. and Wolk, C. P. 1986. Production by filamentous, nitrogen fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. Arch. Microbiol. 145: 215-219 https://doi.org/10.1007/BF00443648
  11. Gromov, B. V., Vepritskiy, A. A., Titova, N. N., Mamkayeva, K. A. and Alexandrova, O. V. 1991. Production of the antibiotic cyanobacterin Lu-I by Nostoc linckia CALU 892 (cyanobacterium). J. Appl. Phycol. 3: 55-59 https://doi.org/10.1007/BF00003919
  12. Kellam, S. J., Cannell, R. J. P., Owsianka, A. M. and Walker, J. M. 1988. Results of a large-scale screening programme to detect antifungal activity from marine and freshwater microalgae in laboratory culture. Brit. Phycol. J. 23: 45-47 https://doi.org/10.1080/00071618800650061
  13. Kim, J. D. and Lee, C. G 2006. Diversity of heterocystous filamentous cyanobacteria (blue-green algae) from rice paddy fields and their differential susceptibility to ten fungicides used in Korea. J. Microbiol. Biotechnol. 16: 240-246
  14. Kulik, M. M. 1995. The potential for using cyanobacteria (bluegreen algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur. J. Plant Pathol. 101: 585-599 https://doi.org/10.1007/BF01874863
  15. Lorain, V. 1996. Antibiotics in Laboratory Medicine. pp. 1-51. Baltimore, Williams & Wilkins
  16. Lorenzen, C. J. 1967. Determination of chlorophyll and Pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343-346 https://doi.org/10.4319/lo.1967.12.2.0343
  17. Mule, M. C. Z., Caire, G. Z., Cano, M. S. And Halperin, D. R. 1991. Bioactive compounds from Nostoc muscorum (cyanobacteria). Cytobios 66: 169-172
  18. Ordog, V. A. and Pulz, O. 1996. Diurnal chances of cytokininkile activity in a strain of Arthronema africanum (cyanobacteria), determined by bioassays. Algol. Studies 82: 57-67
  19. Patterson, G. M. L., Baker, K. K., Baldwin, C. L., Bolis, C. M., Caplan, F. R., Larsen, L. K., Levine, L. A., Moore, R. E., Nelson, C. S., Tschappat, K. D., Tuang, G. D., Boyd, M. R., Cardellina, J. H., Collins, R. P., Gustafson, K. R., Snader, K. M., Weislow, O. S. and Levin, R. A. 1993. Antiviral activity of cultured blue-green algae (Cyanophyta). J. Phycol. 29: 125-130 https://doi.org/10.1111/j.1529-8817.1993.tb00290.x
  20. Pedurand, P. and Reynaud, P. A. 1987. Do cyanobacteria enhance germination and growth of rice? Plant Soil 101: 235-240 https://doi.org/10.1007/BF02370650
  21. Reinhart, K. L., Namikoshi, M. and Choi, B. W. 1994. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. Appl. Phycol. 6: 159-176 https://doi.org/10.1007/BF02186070
  22. Roger, P. A. and Kulasooriya, S.A. 1980. Blue-green Algae and Rice. pp. 1-112. Los Banos, Laguna, Philippines. International Rice Institute
  23. Smith, A. J. 1982. Modes of cyanobacterial metabolism. pp. 4786. In: Carr, N. G. and Whitton, B. A. Eds. The Biology of Cyanobateria. Botanical Monographs. Vol. 19. Black well, Oxford
  24. Starr, T. J., Dieg, E. F., Church, K. K. and Allen, M. B. 1962. Antibacterial and antiviral activities of algal extracts studies by acridine orange staining. Texas Rep. Biol. Med. 20: 271-278
  25. Stirk, W. A., Ordog, V. A and Sad en, J. 1999. Identification of cytokinin isopentenyladenine in a strain of Arthronema africanum (cyanobacteria). J. Phycol. 35: 89-92 https://doi.org/10.1046/j.1529-8817.1999.3510089.x
  26. Sveshnikov, D. A., Sveshnikova, N. V., Rao, K. K. and Hall, D. 1997. Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous culture and under nutrient stress. FEMS Microbiol. Lett. 147: 297-301 https://doi.org/10.1111/j.1574-6968.1997.tb10257.x
  27. Welch, A. M. 1962. Preliminary survey of fungistatic properties of marine algae. J. Bacteriol. 83: 97-99
  28. Zulpa, G., Zaccaro, M. C., Boccazzi, F., Parada, J. L. and Storni, M. 2003. Bioactivity of intra and extracellular substances from cyanobacteria and lactic acid bacteria on wood blue stain fungi. Biol. Control 27: 345-348 https://doi.org/10.1016/S1049-9644(03)00015-X

Cited by

  1. vol.36, pp.1, 2008, https://doi.org/10.4489/MYCO.2008.36.1.013
  2. vol.36, pp.4, 2008, https://doi.org/10.4489/MYCO.2008.36.4.242
  3. Antimicrobial assay and genetic screening of selected freshwater Cyanobacteria and identification of a biomolecule dihydro-2H-pyran-2-one derivative vol.122, pp.4, 2017, https://doi.org/10.1111/jam.13385
  4. Biological Activity of the Cyanobacterium Oscillatoria brevis Extracts as a Source of Nutraceutical and Bio-preservative Agents vol.13, pp.8, 2017, https://doi.org/10.3923/ijp.2017.1010.1019
  5. cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential pp.17598885, 2018, https://doi.org/10.1111/jphs.12202
  6. sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B vol.7, pp.3, 2016, https://doi.org/10.1128/mBio.00667-16
  7. Microalgae and their effects on metal bioavailability in paddy fields vol.18, pp.3, 2018, https://doi.org/10.1007/s11368-017-1881-3