• Title/Summary/Keyword: fundamental parameters

Search Result 958, Processing Time 0.029 seconds

MICROLENS MASSES FROM 1-D PARALLAXES AND HELIOCENTRIC PROPER MOTIONS

  • Gould, Andrew
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.215-218
    • /
    • 2014
  • One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.

Fundamental Study for Optimization of Grinding Condition Using STD11 Material (금형강(STD11)의 연삭가공조건 최적화를 위한 기초 연구)

  • 이영석;하만경;곽재섭;류인일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.903-906
    • /
    • 1997
  • For the net shape manufacturing, grinding is a important process that influences directly the accuracy and the integrity of products. We studied and researched the grinding force, surface roughness, and grinding wheel durability, according to the change of a feed speed of the table and a depth of the cut step by step with experiment that it is used to WA wheel. Workpiece materials were used STDII. The purpose of this study proposes the basic data for design of the machine tool and for controlling the machining parameters to obtain optimum performance of plunge grinding system during operation.

  • PDF

Design of the precision micro-positioning stage (초정밀 마이크로 위치결정 스테이지의 설계)

  • 한창수;김경호;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.539-542
    • /
    • 1997
  • We present a micro-positioning stage that has minimized geometrical error and can drive in the 4-axis. This stage divided into two parts: $Z\theta_x$ $\theta_y$, motion stage and$\theta_z$ motion stage. These stages are constructed in flexure hinges, piezoelectric actuators and displacement scnsors. The dynamic model for each stage is obtained and their FE (finite element) models are made. Using the Lagrange's equation, the motion of equation is found. Through the parametric analysis and FE analysis, sensitiv~ty of the design parameters is executed. Finally, fundamental frequencies, maximum stress, and displacement sensitivity for each stage are obtained. We expect that this micro-positioning stage be a useful micro-alignment device for various applications.

  • PDF

The Embedded Atom Method Analysis of the Nickel (Nickel의 Embedded Atom Method 해석)

  • 정영관;김경훈;이근진;김종수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.572-575
    • /
    • 1997
  • The embedded atom method based on density functional theory was developed as a new means for calculating ground state properties of realistic metal system by Murray S. Daw, Stephen M. Foiles and Michael I. Baskes. In the paper, we had corrected constitutive formulae and parameters on the nickel for the purpose of doing Embedded Atom Method analysis. And then we have computed the properties of the nickel on the fundamental scale of the atomic structure. In result, simulated ground state properties, such as the lattice constant, elastics constants and sublimation energy, show good agreement with Daw's simulation data and with experimental data.

  • PDF

Frequence Characteristics of Impinging Tones by High-Speed Plane Jets and Wedges (고속 평면제트와 쐐기에 의한 충돌 순음의 주파수특성)

  • Kwon, Young-Pil;Jang, Wook;Lee, Geun, Hee;Kim, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1210-1216
    • /
    • 2001
  • The impinging tones by high-speed plane jets are investigated for the characteristics of edgetone generation based on experimental observations. Experiment has been performed for edgetones with a slit nozzle and a wedge system. The jet in the experiment is varied from low to high subsonic speed to obtain the effect of the speed on the frequency characteristics of impinging tones. The experimental data obtained previously for edgetones and platetones by various nozzles are compared with the present edgetone data for the condition of tone generation, the frequency ranges and the effective source point. It is found that the jet speed has no fundamental influence on the impinging tone characteristics. Regardless of the jet speed, the effective source point is about a quarter wavelength downstream from the edge tip. With increase in jet speed, the influence of the nozzle configuration is decreased and the operating frequencies show good coincidencies by normalized parameters based on the slit thickness.

  • PDF

Nonlinear analysis of a 4-dof friction induced self-ocsillation system with the friction coefficient of velocity and pressure (속도와 압력의 항의 마찰상수를 갖는 마찰기인 4자유도계 자려진동 시스템의 비선형 해석)

  • Joe, Yong-Goo;Shin, Ki-Hong;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.331.1-331
    • /
    • 2002
  • Four degrees of freedom mathematical model is presented to describe the fundamental mechanisms of the disc brake squeal noise. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The friction coeficient including "relative velocity" and ′normal force" can be generally formulated as the form of multiplication with polynominal parameters(${\beta}$, ${\gamma}$). (omitted)

  • PDF

Fabrication of Graded-Boundary Ni/Steel Material by Laser Beam (레이저빔에 의한 조성구배계면 Ni/Steel 재료의 제조)

  • 안재모;김도훈
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 1999
  • This work was carried out as a fundamental experiment to fabricate a Graded-Boundary Ni/Steel material using a laser beam. A Ni sheet was placed on a steel substrate, and then a series of high power $CO_2$ laser beams were irradiated on the surface in order to produce a homogeneous alloyed layer. The processing parameters were : 4 ㎾ laser power, 2m/min traverse speeds, -2mm defocuing, 17 l/min sheiding gas flow rates. The sequential repetition of the laser surface alloying treatment up to 4 times, resulted in about 5mm thick of fair compositional gradient systems. In order to determine the microstructure, phase and compositional profiles in this material, optical microscopy, XRD and EDS were used. The compositions varied from 66% to 0% for Ni and 34% to 100% for Fe in this material The microstructures were typical morphologies of rapid solidification and solid-state cooling. Since compressive stress was formed in the heat affected region due to martensitic transformation, while relative tensile stress was developed in the alloyed region, cracks were formed between the alloyed region and the substrate region.

  • PDF

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

Current Collection of Catenary System with Time-Varying Stiffness (시변강성 가선계의 집전성능)

  • 최연선
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.131-138
    • /
    • 2000
  • The design of current collection system of high speed train requires the fundamental understandings for the dynamic characteristics of catenary system and pantograph. The stiffness of catenary system of high speed train has the varying characteristics for the change of contact point with pantograph, since the supporting pole and hanger make the different boundary conditions for the up-down stiffness of a trolley wire. The variation of stiffness results in Mathiue equation, which characterizes the stability of the system. However, the two-term variation of the stiffness due to span length and hanger distance cannot be solved analytically. In this paper, the stiffness variations are calculated and the physical reasoning of linear model and one term Mathieu equation are reviewed. And the numerical analysis for the two-term variation of the stiffness is done for the several design parameters of pantograph.

  • PDF

Fundamental Condition for the Realization of Maximal Contrast and Brightness in Liquid Crystal Display Devices: I. Monochromatic Case (액정표지소자에서 화면의 명암대비와 밝기를 극대화하는 기본조건: I. 단색광의 경우)

  • 노봉규;김규석;김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.404-410
    • /
    • 1994
  • The contrast and the brightness of a liquid crystal display panel are expressed in terms of the characteristic parameters of the rotational transformation on the Poincare sphere of the liquid crystal (LC) cell, which is the geometric representation of the electro-optic polarization transmission characteristics of the cell. From these, we show that the contrast and the brightness of the displayed images can be maximized when the rotation angle becomes $180^{\circ}$ for the rotational transformation corresponding to the change of the state of the LC cell from non-select to select state. state.

  • PDF