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Abstract: One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source
relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al.
(2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as
a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy
can be broken in many cases using the relatively crude 2-D parallax information that is often available
for microlensing events. I also develop an explicit formula for the region of parameter space where it is
more difficult to break this degeneracy. Although no mass/distance measurements have yet been made
using this technique, it is likely to become quite common over the next decade.
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1. INTRODUCTION

Even at the dawn of microlensing experiments 20 years
ago, it was already realized that vastly more microlens-
ing events will yield one-dimensional (1-D) microlens
parallaxes than full (2-D) parallaxes (Gould et al.
1994). However, these 1-D parallaxes remain largely
unexploited.
The amplitude of the microlens parallax vector πE is

the ratio of the lens-source relative parallax πrel to the
angular Einstein radius θE, while its direction is set by
the lens-source relative proper motion µ,

πE =
πrel

θE

µ

µ
. (1)

The numerator of the first ratio quantifies the appar-
ent angular lens-source displacement as the observer
changes position, while the denominator translates this
angular scale into the scale of microlensing phenom-
ena. The second term appears because the evolution
of microlensing effects due to parallax depends on the
direction of lens-source relative motion. See Figure 1 of
Gould & Horne (2013).
Note that from the definition of θE,

θ2E ≡ κMπrel , κ ≡
4G

c2AU
≃ 8.1

mas

M⊙
, (2)

measurement of both θE and πE directly leads to deter-
minations of the lens mass and relative parallax

M =
θE
κπE

, πrel = θEπE . (3)

The reason that 1-D parallaxes are easier to measure
is that, to the extent that µ is parallel to the direc-
tion of Earth’s acceleration (projected on the sky at
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the peak of the event) n̂a, it causes the event evolu-
tion to speed up or slow down as it progresses, thereby
inducing an asymmetric distortion on the lightcurve.
Since microlensing lightcurves are otherwise intrinsi-
cally symmetric, such distortions are easily measured.
By contrast, to the extent that µ is perpendicular to n̂a,
it gives rise to a symmetric distortion, which is much
more difficult to disentangle from other symmetric pa-
rameters. Hence, we define

πE,‖ ≡ πE,geo · n̂a (4)

and πE,⊥ = (π2
E − π2

E,‖)
1/2 (see Gould 2004 for sign

conventions).
A very important notational point for the current

work is that πE is subscripted with “geo” (to indicate
geocentric frame at the peak of the event) whereas πE

is not. This is because the magnitude of this vector
does not depend on the frame of reference, but the
direction does (due to explicit dependence on µ/µ in
Equation (1)).
Despite their predicted ubiquity, 1-D parallaxes are

almost never reported in the literature. Among the
handful of exceptions (Park et al. 2004; Ghosh et al.
2004; Jiang et al. 2004; Dong et al. 2009; Muraki et al.
2011), the first three reports are due to the novelty of
the phenomenon and the last two are due to the fact
that the actual value of πE,‖ was so large that πE (and
so M) could be reasonably estimated despite the poor
measurement of πE,⊥.
Nevertheless, as first pointed out by Ghosh et al.

(2004), 1-D microlens parallaxes could yield microlens
mass (and distance) measurements simply by making a
late-time measurement of the heliocentric proper mo-
tion. Stated in the most naive way, knowing one com-
ponent (πE,‖) of the vector πE (from the microlensing
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event) and its direction µ/µ (from late-time astrome-
try), one can extract the amplitude of the full vector πE.
Then knowing the Einstein timescale tE (again from the
event) and the amplitude of proper motion µ, one can
determine the angular Einstein radius θE = µtE.
The problem with this naive reasoning, as already

recognized by Ghosh et al. (2004), is that πE,‖ and tE
are derived in the geocentric frame, whereas µ is mea-
sured in the heliocentric frame. The relation between
these frames, as noted by Ghosh et al. (2004) but in a
form closer to that preferred by Janczak et al. (2010),
is

µhel = µgeo + µ⊕πrel =
θE
tE

πE,geo

πE

+ µ⊕πEθE , (5)

where µ⊕ ≡ v⊕,⊥/AU and v⊕,⊥ is the transverse ve-
locity of Earth in the frame of the Sun at the peak of
the event, projected on the plane of the sky.
However, in the intervening 10 years, there has

been essentially no work aimed at understanding Equa-
tion (5). For example, it has not even been recognized
that this equation leads to a quadratic equation in πE,⊥,
which therefore has two (or zero) real solutions.
Nevertheless, many changes in the observational

landscape are leading to radical improvements for the
prospects of implementing the original suggestion of
Ghosh et al. (2004). First is the simple fact that the
massive search for events made possible by the inaugu-
ration of the Optical Gravitational Lensing Experiment
(OGLE-III) survey in 2002 are now more than 10 years
old, implying that sources and lenses have already sub-
stantially separated. Second, the Giant Magellan Tele-
scope (GMT) is already under construction and likely
to be operational within another 10 years. When it is,
its FWHM in J band will be about 11 mas, meaning
that sources and lenses separated by just 2 FWHM (22
mas) will be eligible for very good µhel measurements.
Third, microlensing event detections have already in-
creased dramatically since 2011 with the inauguration
of the OGLE-IV survey and are likely to accelerate fur-
ther in 2015 with the inauguration of the new Korea Mi-
crolensing Telescope Network (KMTNet) of 1.6m tele-

scopes with 4 deg2 cameras on three continents. Since
typical lens-source proper motions are µ ∼ 4mas yr−1,
many of these events will be accessible to GMT. Fi-
nally, it is quite plausible that new space-based wide-
field survey telescopes, like Euclid and WFIRST will
survey essentially the entire bulge microlensing field at
roughly the same epoch as GMT first light. Since these
have much smaller apertures than GMT, their FWHM
will be much larger (roughly 140 mas for Euclid and
110 for WFIRST). However, their greater point-spread-
function stability will permit proper-motion measure-
ments at 1 FWHM (rather than 2), and their wider (i.e.,
systematic) coverage will permit a systematic search
for relatively high proper-motion archival events over a
very large field.
Of course, once such data are obtained, the analysis

will proceed by simultaneous fitting of the microlens-
ing and astrometric data. However, a proper analytic

investigation of Equation (5) is still very important for
understanding what can be learned from such observa-
tions, which is the central motivation for taking them.

2. QUADRATIC FORM

Simply taking the ratio of the two components (perpen-
dicular and parallel to n̂a) of µhel (Equation (5)) yields
the tangent of the angle φ of this vector relative to n̂a,

tanφ ≡
µhel,⊥

µhel,‖
=

πE,⊥ + θ⊕,⊥π
2
E

πE,‖ + θ⊕,‖π
2
E

; θ⊕ ≡ µ⊕tE . (6)

Note that θ⊕ = 0.23(v⊕,⊥/20 kms−1)(tE/20 day).
Then writing π2

E = π2
E,‖ + π2

E,⊥ and rearranging terms

yields
Aπ2

E,⊥ − πE,⊥ + C = 0 , (7)

where

A ≡ θ⊕,‖ tanφ− θ⊕,⊥ ; C ≡ Aπ2
E,‖+πE,‖ tanφ , (8)

which has the solutions

πE,⊥ =
1±

√
1− 4AC

2A
. (9)

2.1. Limit of 4AC≪1

In the limit 4AC ≪ 1, the two solutions of Equation (9)
can be approximated as

πE,⊥ = C(1 +AC + . . .) (4AC ≪ 1) (10)

and

πE,⊥ =
1

A
−C+ . . . (4AC ≪ 1, alternate) . (11)

Note that both solutions are perfectly valid. The lead-
ing term in the first solution corresponds to ignoring
the first term in Equation (7) and yields “small” πE,⊥,
while the leading term in the second solution corre-
sponds to ignoring the last term in Equation (7) and
yields “large” πE,⊥.
In practice, there will be some information about

πE,⊥ from the microlensing event, which may well be
adequate to break this degeneracy. The important
point is, however, that these two solutions are likely
to correspond to distinct minima, so that they will not
both automatically be probed by simple downhill min-
imization: they must both be explicitly checked. This
situation is similar to the “jerk-parallax” degenerate
solutions, which also constitute the roots of quadratic
equation in πE,⊥. See Equation (20) of Gould (2004).
In fact, prior to the discovery of this degeneracy, Alcock
et al. (2001) found one of the two solutions by down-
hill minimization. Gould (2004) then found the second
solution from the symmetries of the quadratic equa-
tion, which turned out to have equally good χ2. Subse-
quent astrometric measurements by Drake et al. (2004)
showed that the second solution was correct (Gould et
al. 2004).
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2.2. General Case

Equation (9) can be reformulated to eliminate “C” in
favor of direct observables

πE,⊥ =
1±

√

sec2 φ− (2AπE,‖ + tanφ)2

2A
. (12)

Thus, if 2AπE,‖ ∼ secφ − tanφ, then the argument
under the radical (discriminant) is close to zero and
there is a danger that the error ellipses from the two
solutions merge and/or cannot be distinguished by the
microlensing data. Thus checking for this approximate
equality is an important diagnostic.
If the source lies on the ecliptic, then θ⊕,⊥ = 0. Be-

cause microlensing fields lie close to the ecliptic, this
can often be a useful approximation. In this case

πE,⊥ =
cotφ±

√

csc2 φ− (1 + 2θ⊕,‖πE,‖)2

2θ⊕,‖
;

(θ⊕,⊥ ≡ 0) . (13)

In this form, it is clear that as φ tends toward ±π/2,
the discriminant will very likely be small (and hence
the solution prone to degeneracy).
Another key point is that even if πE,‖ = 0, it may

still be possible to measure πE,⊥ (and so πE) from the
direction of µhel. This would not be possible from the
naive perspective outlined in Section 1. Explicitly,

πE,⊥ =
1

A
=

1

θ⊕,‖ tanφ− θ⊕,⊥
(πE,‖ = 0) . (14)

This is important, particularly if there are wide-
field high-resolution survey data (from e.g., Euclid

or WFIRST) for which special observations of “low-
probability” (i.e., πE,‖ ∼ 0) targets are not required.
However, events that have high priority (such as those
with planetary events) with πE,‖ ∼ 0 could be targeted
for individual observations to measure µhel, particu-
larly if the planetary-event lightcurve indicated a high
geocentric scalar proper motion µgeo (Henderson et al.
2014).

3. ERROR ANALYSIS

While v⊕,⊥ is known exactly, none of the quantities
entering Equation (7) are known exactly. In particu-
lar, θ⊕ = v⊕,⊥tE/AU, and tE is a measured quantity
from the event. Similarly, πE,‖ is measured from the
event, while tanφ comes from the proper motion mea-
surement. However, in most cases, πE,‖ will be mea-
sured with substantially worse precision than the other
quantities. Hence, it is useful to approximate the oth-
ers as “known perfectly” and ask how the uncertainty
in πE,⊥ depends on the measurement of πE,‖. To deter-
mine this, I differentiate Equation (7) and find

δπE,⊥

δπE,‖
=

tanφ+ 2AπE,‖

1− 2AπE,⊥
. (15)

Clearly the appearance of πE,⊥ in the denominator of
the right hand side reflects a fundamental shortcoming

of making a linearized analysis of an intrinsically non-
linear problem. Nevertheless, this expression points to
the possibility of a strong degeneracy if πE,⊥ ∼ 1/2A.
Note from Equation (9) that this corresponds to the
discriminant (1 − 4AC) being close to zero1. Recall
from Section 2.2 that this is the same region of solution
space that is potentially most sensitive to the discrete
degeneracy. Therefore, measurements of πE,‖ ∼ 1/2A
are particularly problematic. Note, however, from com-
parison with Equation (14) that this degeneracy specif-
ically does not apply to the πE,⊥ = 0 case.

4. INFORMATION FROM DIRECT IMAGING

Of course, if the lens is separately imaged from the
source, it is possible in principle to make a photometric
estimate of its mass and distance. However, such mea-
surements face a number of challenges. First, the pho-
tometry will most often be done in the near-infrared, a
spectral region for which reddening is highly degenerate
with intrinsic temperature. Second, even if the lens is
in the Galactic bulge (and so behind essentially all the
dust, whose extinction properties can then be measured
from nearby clump stars, e.g., Nataf et al. 2013), even
main-sequence stars can differ in mass by several tens
of percent at fixed color. Finally, and most fundamen-
tally, most stars are in binaries, and for a significant
minority of cases it will be the lower-mass component
that gives rise to the microlensing event (because event
rate scales as M1/2), while the more massive compo-
nent will be seen by direct imaging (because light is a
high power of mass).
Note that while in high-resolution imaging of mi-

crolensing lens/source pairs carried out to date it has
often been possible to rule out binary companions over
most of parameter space, this will not be possible in the
imaging of more generic events in the future. For exam-
ple, Batista et al. (2014) were able to rule out compan-
ions closer than 11 mas. This corresponded to phys-
ical separations less than 80 AU. However, the basis
for this limit was that the event (MOA-2011-BLG-293)
had very high magnification, making it very sensitive
to binary companions. By contrast, typical events with
1-D parallaxes will not be high-magnification, implying
that microlensing-based constraints on companions will
be very weak.
Thus, overall, mass/distance determinations from

(πE,‖,µhel) will be more accurate than those derived
from photometry, and in a substantial minority of cases
there will be significant disagreement due to lensing by
secondary components of binaries. It is true that in
these cases the initial µhel measurement will be in er-
ror due to an implicit assumption that the primary and
the source were initially aligned, whereas actually the
alignment was with the unseen (or barely seen) sec-
ondary. However, once these cases are identified, they
can be rectified by a second epoch of imaging, which

1It is a generic property of quadratic equations that if the coef-
ficients depend on some quantity q, then the ratio of the error
in the solution to the error in q diverges as the discriminant
approaches zero
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would directly measure the proper motion of the pri-
mary. This will differ from the proper motion of the
secondary (i.e., the lens) due to orbital motion, but
usually by an amount that is very small compared to
the lens-source proper motion itself.
In brief, photometric mass/distance estimates can be

an important check on estimates derived from a com-
bination of 1-D parallaxes and heliocentric proper mo-
tions, but they will generally be less precise and less
accurate.

5. CONCLUSION

Determinations of microlens masses from the combina-
tion of 1-D microlens parallax (πE,‖) and heliocentric
proper motion (µhel) are likely to become quite com-
mon over the next decade. I have shown that solutions
derived from such data are in the form of a quadratic
equation and therefore have an intrinsic two-fold degen-
eracy. This degeneracy may be broken by microlensing
data, which weakly constrain πE,⊥ even when they are
unable to measure it precisely. The degeneracy is most
severe when the discriminant of the quadratic equation
is near zero. In this case, each solution separately has
large errors, so that the two solutions may merge to-
gether. Photometric mass/distance estimates can be
an important check on mass/distance determinations
based on 1-D parallaxes and heliocentric proper mo-
tions, but are overall less accurate and less precise.
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