• Title/Summary/Keyword: fundamental parameters

Search Result 956, Processing Time 0.038 seconds

Cycle Simulation for the Performance Prediction of a High Pressure Unit Injection System of a Diesel Engine (디젤엔진용 고압분사 유닛인젝터의 성능예측을 위한 사이클 시뮬레이션)

  • 김철호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.63-74
    • /
    • 2001
  • In this study, a cycle simulation program of a Unit-Injection(UI) system was developed to estimate the injection performance of newly designed injection system. A fundamental theory of the simulation program is based on the conservation law of mass. Loss of fuel mass in the system due to leakage, compressibility effect of the liquid fuel and friction loss in the control volume was considered in the algorithm f the program. For the evaluation of the simulation program developed, the experimental result which was offered by the Technical Research Center of Doowon Precision Industry Co. was incorporated. Two main parameters; the maximum pressure in the plunger chamber and total fuel mass(kg) injected into the engine cylinder per cycle, were measured and compared with the simulation results. It was found that the maximum error rate of the simulation result to the experimental output was less than 3% in the rated rotational speed (rpm) range of the plunger cam.

  • PDF

Education and Research on Integrated Circuit (집적회로의 교육과 연구)

  • 庄野克房
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.5
    • /
    • pp.48-54
    • /
    • 1982
  • In the university IC laboratory we can use only a limited number of experimental arrangements. Since practical process parameters determine the fundamental design rules of ICs, appropriate fabrication process must be construtced. Examples of the process to train the engineering students in two or three weeks will be shown.

  • PDF

Development of machining apparatus for ceramic ball bearing (자성유체 연마법을 이용한 세라믹볼 베어링 가공장치의 개발)

  • Aum, Ho-Sung;Roh, Byung-Ok;Lee, Soo-Wohn;Jang, Tae-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.545-553
    • /
    • 1998
  • Recently a new process known as the magnetic fluid grinding has been developed, which can remove material from the surface of ceramic balls by fifty to one hundred times more rapidly than the conventional lapping process. In this study, the ceramic balls with various compositions are made and ground by using the magnetic fluid grinding technique with various machining parameters. In order to make well-round shaped balls by using the magnetic fluid grinding technique, the fundamental research to find out the machining factors has been carried out. Developing an equipment with higher efficiency and reliability in the machining could certainly lead to the higher productivity with excellent quality of ceramic balls.

A Production and Perception Experiment of Korean Alveolar Fricatives

  • Yoon, Kyu-Chul
    • Speech Sciences
    • /
    • v.9 no.3
    • /
    • pp.169-184
    • /
    • 2002
  • Korean has two types of voiceless alveolar fricatives: a non-tense fricative /$S^{h}$ and a tense fricative /s'/. Twenty native speakers of Korean produced five pairs of isolated words containing word initial $S^{h}V$ and /s'V/ sequences where V was any one of five (/a, e, i, o, u/) of Korean vowels. Acoustic measures such as duration, fricative noise prominent frequency, energy change of following vowel, and fundamental frequency at vowel onset were examined. Results showed that among the parameters, aspiration noise duration of /s'/ in mid and low vowel contexts was less than 21 ms. In a perception experiment, where only the aspiration noise interval of the /$S^{h}$/ tokens was incrementally reduced, some listeners shifted perception from /$S^{h}$/ to /s'/.

  • PDF

A Validity Study on Measurement of Mental Fatigue Using Speech Technology (음성기술을 이용한 정신피로 측정에 관한 타당성 연구)

  • Song, Seungkyu;Kim, Jongyeol;Jang, Junsu;Kwon, Chulhong
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2013
  • This study proposes a method to measure mental fatigue using speech technology, which has not been used in previous research and is easier than existing complex and difficult methods. It aims at establishing a relationship between the human voice and mental fatigue based on experiments to measure the influence of mental fatigue on the human voice. Two monotonous tasks of simple calculation such as finding the sum of three one digit numbers were used to measure the feeling of monotony and two sets of subjective questionnaires were used to measure mental fatigue. While thirty subjects perform the experiment, responses to the questionnaire and speech data were collected. Speech features related to speech source and the vocal tract filter were extracted from the speech data. According to the results, speech parameters deeply related to mental fatigue are a mean and standard deviation of fundamental frequency, jitter, and shimmer. This study shows that speech technology is a useful method for measuring mental fatigue.

A NEW METHOD TO CALIBRATE THE STELLAR COLOR/SURFACE-BRIGHTNESS RELATION

  • Gould, Andrew
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.4
    • /
    • pp.153-158
    • /
    • 2014
  • I show that the standard microlensing technique to measure the angular radius of a star using color/surface-brightness relations can be inverted, via late-time proper motion measurements, to calibrate these relations. The method is especially useful for very metal-rich stars because such stars are in short supply in the solar neighborhood where other methods are most effective, but very abundant in Galactic bulge microlensing fields. I provide a list of eight spectroscopically identified high-metallicity bulge stars with the requisite finite-source effects, seven of which will be suitable calibrators when the Giant Magellan Telescope comes on line. Many more such sources can be extracted from current and future microlensing surveys.

Vibration and Post-buckling Behavior of Laminated Composite Doubly Curved Shell Structures

  • Kundu, Chinmay Kumar;Han, Jae-Hung
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.21-42
    • /
    • 2009
  • The vibration characteristics of post-buckled laminated composite doubly curved shells are investigated. The finite element method is used for the analysis of post-buckling and free vibration of post-buckled laminated shells. The geometric non-linear finite element model includes the general non-linear terms in the strain-displacement relationships. The shell geometry used in the present formulation is derived using an orthogonal curvilinear coordinate system. Based on the principle of virtual work the non-linear finite element equations are derived. Arc-length method is implemented to capture the load-displacement equilibrium curve. The vibration characteristics of post-buckled shell are performed using tangent stiffness obtained from the converged deflection. The code is first validated and then employed to generate numerical results. Parametric studies are performed to analyze the snapping and vibration characteristics. The relationship between loads and fundamental frequencies and between loads and the corresponding displacements are determined for various parameters such as thickness ratio and shallowness.

Thermal Conductivities of Nanofluids (나노 유체(Nanofluids)의 열전도도)

  • Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.968-975
    • /
    • 2004
  • Nanofluids have anomalously high thermal conductivities at very low fraction, strongly temperature-dependent and size-dependent conductivities, and three-fold higher critical heat flux than that of base fluids. Traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain why nanofluids have these intriguing features. So in this paper, we devise a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The proposed model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we physically explain the new phenomena for nanofluids. In addition, based on a proposed model, the effects of various parameters such as the ratio of thermal conductivity of nanofluids to that of a base fluid, volume fraction, nanoparticle size, and temperature on the thermal conductivities of nanofluids are investigated.

Numerical Analysis for Breakup of Liquid Jet in Crossflow (기체 유동에 수직 분사된 액체의 분해에 대한 수치적 해석)

  • Park, Sun-Il;Chang, Keun-Shik;Moon, Yun-Wan;Sah, Jong-Youb
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1629-1633
    • /
    • 2004
  • Liquid is commonly introduced as transversal jets in venturi scrubber which is one of the gas cleaning equipments. The jet dynamics such as penetration and breakup is of fundamental importance to the dust-collection efficiency. We have developed a model that can numerically simulate the breakup of the liquid jet in crossflow. This simulation consists of models on liquid column, jet surface breakup, column fracture and secondary droplet breakup. These models have been embedded in the KIVA3-V code. We have calculated such parameters as the jet penetration, jet trajectory, droplet size, velocity field and the volume flux distribution. The results are compared with the experimental data in this paper.

  • PDF

The Effect of Back Rake Angle of Tool for Specific Cutting Resistance in Turning (선삭에서 공구의 윗면경사각이 비절삭저항에 미치는 영향)

  • 김정현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.80-89
    • /
    • 1998
  • Back rake angle of tool is one of the fundamental effects to the cutting ability. In this paper, for several back rake angle of lathe tool (-5$^{\circ}$ , 0$^{\circ}$ , 5$^{\circ}$ , 10$^{\circ}$ , 15$^{\circ}$ ), we experimentally examine cutting forces via orthogonal cutting. Using measured cutting forces, a formula for specific cutting resistance is derived according to the variation of tool angle. Also, the measured cutting forces are analyzed in both time and frequency domain. Cutting parameters are obtained by measuring the thickness of chip, and the effect of the back rake angle of tool is manifested. This study maintains the predicted cutting model with improved accuracy.

  • PDF