• Title/Summary/Keyword: fundamental parameters

Search Result 950, Processing Time 0.031 seconds

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

Fundamental parameters of nanoporous filtration membranes

  • Wei Li;Xiaoxu Huang;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.115-120
    • /
    • 2023
  • The design theory for nanoporous filtration membranes needs to be established. The present study shows that the performance and technical advancement of nanoporous filtration membranes are determined by the fundamental parameter I (in the unit Watt1/2) which is formulated as a function of the shear strength of the liquid-pore wall interface, the radius of the filtration pore, the membrane thickness, and the bulk dynamic viscosity of the flowing liquid. This parameter determines the critical power loss on a single filtration pore for initiating the wall slippage, which is important for the flux of the membrane. It also relates the membrane permeability to the power cost by the filtration pore. It is shown that for biological cellular membranes its values are on the scale 1.0E-8Watt1/2, for mono-layer graphene membranes its values are on the scale 1.0E-9Watt1/2, and for nanoporous membranes made of silica, silicon nitride or silicon carbonized its values are on the scale 1.0E-5Watt1/2. The scale of the value of this parameter directly measures the level of the performance of a nanoporous filtration membrane. The carbon nanotube membrane has the similar performance with biological cellular membranes, as it also has the value of I on the scale 1.0E-8Watt1/2.

Acoustic parameter delta of an aspirated voice in stroke patients (뇌졸중 환자 대상 흡인 음성의 음향변수 변동)

  • Kang, Young Ae;Jee, Sung Ju;Koo, Bon Seok;Jo, Cheolwoo
    • Phonetics and Speech Sciences
    • /
    • v.9 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • The present study aimed to investigate the changes of acoustic parameters of the aspirated voice in stroke patients. The eighty-eight subjects diagnosed with cerebro-vascular accident were divided into 32 penetration/aspiration (P/A) and 56 Non-P/A groups according to the videofluroscopic swallowing study (VFSS) results, and 26 control subjects participated. All subjects preformed VFSS and vowel /a/ was recorded three times pre- and post VFSS. Since the variation in the acoustic parameters within a single phonation has been observed, we proposed a delta formula for the acoustic parameters which can reflect the temporal changes of the each parameter in an utterance. We measured from the voice data eight acoustic parameters: fundamental frequency (F0), standard deviation of F0 (F0_SD), Jitter, relative average perturbation (RAP), Shimmer, amplitude perturbation quotient (APQ), harmonic to noise ration (HNR), noise to harmonic ratio (NHR). Then we found parameters which show the meaningful biggest temporal change in an utterance using the suggested delta parameter. Among them, the deltas of shimmer and APQ were significantly different pre- and post VFSS. These deltas of the P/A and the control group were increased after VFSS, while those of the Non-P/A group was descended. The variation patterns of the P/A and the control group were similar but the change width of the P/A group was larger. The large variations in an aspirated phonation of the P/A group are thought to be caused by irregular changes in air resistance due to residual food on the vocal cords.

Sensitivity analysis of the plastic hinge region in the wall pier of reinforced concrete bridges

  • Babaei, Ali;Mortezaei, Alireza;Salehian, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.675-687
    • /
    • 2019
  • As the bridges are an integral part of the transportation network, their function as one of the most important vital arteries during an earthquake is fundamental. In a design point of view, the bridges piers, and in particular the wall piers, are considered as effective structural elements in the seismic response of bridge structures due to their cantilever performance. Owing to reduced seismic load during design procedure, the response of these structural components should be ductile. This ductile behavior has a direct and decisive correlation to the development of plastic hinge region at the base of the wall pier. Several international seismic design codes and guidelines have suggested special detailing to assure ductile response in this region. In this paper, the parameters which affect the length of plastic hinge region in the reinforced concrete bridge with wall piers were examined and the sensitivity of these parameters was evaluated on the length of the plastic hinge region. Sensitivity analysis was accomplished by independently variable parameters with one standard deviation away from their means. For this aim, the Monte Carlo simulation, tornado diagram analysis, and first order second moment method were used to determine the uncertainties associated with analysis parameters. The results showed that, among the considered design variables, the aspect ratio of the pier wall (length to width ratio) and axial load level were the most important design parameters in the plastic hinge region, while the yield strength of transverse reinforcements had the least effect on determining the length of this region.

Formulation of Optimal Design Parameters and Failure Map for Metallic Sandwich Plates with Inner Dimpled Shell Structure Subject to Bending Moment (굽힘 하중을 받는 딤플형 내부구조 금속 샌드위치 판재의 최적설계변수의 수식화 및 파손선도)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.127-136
    • /
    • 2006
  • Metallic sandwich plates with inner dimpled shell subject to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high precision and bonded with same material skin sheets by resistance welding or adhesive bonding. Metallic sandwich plates with inner dimpled shell structure can be optimally designed for minimum weight subject to prescribed combination of bending and transverse shear loads. Fundamental findings for lightweight design are presented through constrained optimization. Failure responses of sandwich plates are predicted and formulated with an assumption of narrow sandwich beam theory. Failure is attributed to four kinds of mechanisms: face yielding, face buckling, dimple buckling and dimple collapse. Optimized shape of inner dimpled shell structure is a hemispherical shell to minimize weight without failure. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times larger than solid plates with the same strength. Failure mode boundaries and iso-strength lines dependent upon the geometry and yield strain of the material are plotted with respect to geometric parameters on the failure map. Because optimal parameters of maximum strength for given material weight can be selected from the map, analytic solutions for maximum strength are expressed as a function of only material property and proposed strength. These optimal parameters match well with numerical optimal parameters.

A Study for Acoustic Features of Benign Laryngeal Disease (양성 성대 점막 질환의 음향학적 특성에 관한 연구)

  • Lee, Jae Seok;Kim, Jin Pyeong;Park, Jeong Je;Kwon, Oh Jin;Woo, Seung Hoon
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.24 no.1
    • /
    • pp.47-50
    • /
    • 2013
  • Background and Objectives:The purpose of this study is to find features in acoustics and to learn useful features of parameters in order to distinguish laryngeal diseases through many acoustic variables. Materials and Methods:The subjects of this study were 125-male patients who had been diagnosed with vocal nodule, vocal polyp, vocal cyst, Reinke's edema, leukoplakia. To research the features of each disease in acoustics, they are measured 34 parameters by using MDVP. Results:It is clear that in order to see a meaning result when distinguishing laryngeal diseases, $F_0$, $MF_0$, $T_0$, Fhi, Flo, PER variables are significant (p<.05). It means that variables related to fundamental frequency are important to anticipate which group will be diagnosed with Reinke's edema and leukoplakia. vAm had an effect on getting a significant result in terms of amplitude perturbation parameters, which is useful to distinguish between laryngeal polyp/cyst and other laryngeal disease (p<.05). ATRI made a significant result in related to tremor parameters, which is useful to distinguish between laryngeal polyp and other laryngeal disease (p<.05). Conclusion:$F_0$, $MF_0$, $T_0$, Fhi, Flo, PER, vAm, ATRI might be meaningful parameters distinguishing pathologic from benign laryngeal diseases. Especially, the vAm and ATRI are an important factor when forecasting which group would be diagnosed with vocal polyp.

  • PDF

Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.215-228
    • /
    • 2020
  • In this paper, a new method based on the Sander theory is developed for SWCNTs to predict the vibrational behavior of length and ratio of thickness-to-radius according to various end conditions. The motion equation for this system is developed using Rayleigh-Ritz's method. The proposed model shows the vibration frequencies of armchair (5, 5), (7, 7), (9, 9), zigzag (12, 0), (14, 0), (19, 0) and chiral (8, 3), (10, 2), (14, 5) under different support conditions namely; SS-SS, C-F, C-C, and C-SS. The solutions of frequency equations have been given for different boundary condition, which have been given in several graphs. Several parameters of nanotubes with characteristic frequencies are given and vary continuously in length and ratio of thickness-to-radius. It has been illustrated that an enhancing the length of SWCNTs results in decreasing of the frequency range. It was demonstrated by increasing of the height-to-radius ratio of CNTs, the fundamental natural frequency would increase. Moreover, effects of length and ratio of height-to-radius with different boundary conditions have been investigated in detail. It was found that the fundamental frequencies of C-F are always lower than that of other conditions, respectively. In addition, the existence of boundary conditions has a significant impact on the vibration of SWCNTs. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.

The Analysis of Tracheoesophageal Voice after Near-Total Laryngectomy and Implantation of Provox Prosthesis (후두근전적출술과 Provox 삽입술 후 기관식도발성에 관한 연구)

  • Choi, In-Ja;Choi, Young-Soo;Kim, Jin-Hwan;Ahn, Hwoe-Young
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.15 no.2
    • /
    • pp.141-144
    • /
    • 2004
  • Background and Objectives : To compare acoustic, aerodynamic analysis of voice and intelligibility score in patients with near-total laryngectomy and implantation of Provox prothesis. Material and Methods : In order to evaluate the voice characteristics, acoustic, aerodynamic parameter and speech intelligibility were measured in 5 patients after near-total laryngectomy, 5 patients after implantation of Provox prosthesis with total bility were measured in 5 patients after near-total laryngectomy, 5 patients after implantation of Provox prosthesis with total laryngectomy and 10 adults normal speaker. Acoustic analysis was carried out using CSL and aerodynamic analysis was carried out using Aerophon II. Speech sample was recorded and 10 listener was scored for speech intelligibility using a percentage of words correctly identified. Results. Fundamental frequency($F_0$), intensity, jitter, shimmer, maximal phonation time(MPT), subglottic air pressure were used for parameters for voice analysis. There were no significant difference between two group except on fundamental frequency and shimmer. The fundamental frequency was higher in patients with near-total laryngectomy and shimmer was higher in patients after implantation of Provox prosthesis with total laryngectomy. In addition, speech intelligibility was no significant difference between two groups. Conclusion : This results confirm that near-total laryngectomy and implantation of Provox prosthesis provides good voice rehabilitation.

  • PDF

Fundamental framework toward optimal design of product platform for industrial three-axis linear-type robots

  • Sawai, Kana;Nomaguchi, Yutaka;Fujita, Kikuo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.157-164
    • /
    • 2015
  • This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reducedorder model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini-max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.

Implementation and Evaluation of Electroglottograph System (전기성문전도(EGG) 시스템의 개발 및 평가)

  • 김기련;김광년;왕수건;허승덕;이승훈;전계록;최병철;정동근
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.343-349
    • /
    • 2004
  • Electroglottograph(EGG) is a signal recorded from the vocal cord vibration by measuring electrical impedance across the vocal folds through the neck skin. The purpose of this study was to develop EGG system and to evaluate possibility for the application on speech analysis and laryngeal disease diagnosis. EGG system was composed of two pairs of ring electrodes, tuned amplifier, phase sensitive detector, low pass filter, and auto-gain controller. It was designed to extract electric impedance after detecting by amplitude modulation method with 2.7MHz carrier signal. Extracted signals were transmitted through line-in of PC sound card, sampled and quantized. Closed Quotient(CQ), Speed Quotient(SQ), Speed Index(SI), fundamental frequency of vocal cord vibration(F0), pitch variability of vocal fold vibration (Jitter), and peak-to-peak amplitude variability of vocal fold vibration(Shimmer) were analyzed as EGG parameters. Experimental results were as follows: the faster vocal fold vibration, the higher values in CQ parameter and the lower values in SQ and SI parameters. EGG and speech signals had the same fundamental frequency. CQ, SQ, and SI were significantly different between normal subjects and patients with laryngeal cancer. These results suggest that it is possible to implement portable EGG system to monitor the function of vocal cord and to test functional changes of the glottis.