• Title/Summary/Keyword: functions of loading

Search Result 317, Processing Time 0.025 seconds

The effect of infill walls on the fundamental period of steel frames by considering soil-structure interaction

  • Kianoosh Kiani;Sayed Mohammad Motovali Emami
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.417-431
    • /
    • 2024
  • The fundamental period of vibration is one of the most critical parameters in the analysis and design of structures, as it depends on the distribution of stiffness and mass within the structure. Therefore, building codes propose empirical equations based on the observed periods of actual buildings during seismic events and ambient vibration tests. However, despite the fact that infill walls increase the stiffness and mass of the structure, causing significant changes in the fundamental period, most of these equations do not account for the presence of infills walls in the structure. Typically, these equations are dependent on both the structural system type and building height. The different values between the empirical and analytical periods are due to the elimination of non-structural effects in the analytical methods. Therefore, the presence of non-structural elements, such as infill panels, should be carefully considered. Another critical factor influencing the fundamental period is the effect of Soil-Structure Interaction (SSI). Most seismic building design codes generally consider SSI to be beneficial to the structural system under seismic loading, as it increases the fundamental period and leads to higher damping of the system. Recent case studies and postseismic observations suggest that SSI can have detrimental effects, and neglecting its impact could lead to unsafe design, especially for structures located on soft soil. The current research focuses on investigating the effect of infill panels on the fundamental period of moment-resisting and eccentrically braced steel frames while considering the influence of soil-structure interaction. To achieve this, the effects of building height, infill wall stiffness, infill openings and soil structure interactions were studied using 3, 6, 9, 12, 15 and 18-story 3-D frames. These frames were modeled and analyzed using SeismoStruct software. The calculated values of the fundamental period were then compared with those obtained from the proposed equation in the seismic code. The results indicate that changing the number of stories and the soil type significantly affects the fundamental period of structures. Moreover, as the percentage of infill openings increases, the fundamental period of the structure increases almost linearly. Additionally, soil-structure interaction strongly affects the fundamental periods of structures, especially for more flexible soils. This effect is more pronounced when the infill wall stiffness is higher. In conclusion, new equations are proposed for predicting the fundamental periods of Moment Resisting Frame (MRF) and Eccentrically Braced Frame (EBF) buildings. These equations are functions of various parameters, including building height, modulus of elasticity, infill wall thickness, infill wall percentage, and soil types.

Development of a Quality of Life Scale For Children on Chronic Peritoneal Dialysis (만성 복막투석 아동용 삶의 질 척도 개발)

  • Shin, Min-Sup;Cho, Soo-Churl;Jang, Jae-Yeon;Cheong, Hae-Il;Choi, Yong;Ha, Il-Soo
    • Childhood Kidney Diseases
    • /
    • v.12 no.2
    • /
    • pp.202-212
    • /
    • 2008
  • Purpose : The aim of this study was to develop a quality of life scale for children on chronic peritoneal dialysis(QOL-CPD). Methods : Thirty children on chronic PD at Seoul National University Children's Hospital participated. A healthy control group included 47 elementary school children. Other patients groups are 32 children from the department of pediatric orthopedics and 28 children from the department of child psychiatry. The age range of all children was 7 to 16 years. Preliminary items of the QOL-CPD were developed and administered along with the Korean version of the Children's Depression Inventory(CDI) to all children. Results : The final QOL-CPD was constructed by excluding those items with a factor loading of less than .20, and the principal axis factor analysis was performed again. The QOLCPD demonstrated a good internal consistency with a value of .87. The dialysis and childpsychiatric groups showed significantly lower QOL scores compared to the healthy control group. In addition, the dialysis and child-psychiatric groups showed greater difficulties on physical and academic functions. For the CDI, the PD group showed a mild level of depression. Conclusion : The results of this study demonstrate the clinical utility of a newly developed self-report QOL scale specific for children on chronic PD.

Studies on Physicochemical and Biological Properties of Depolymerized Alginate from Sea Tangle, Laminaria japonicus by Heating Hydrolysis 3. Excretion Effects of Cholesterol, Glucose and Cadmium (Cd) in Rats (다시마 (Laminaria japonicus) Alginate의 가열가수분해에 따른 물리${\cdot}$화학적 및 생물학적 특성에 관한 연구 -3. 랫드의 Cholesterol, Glucose 및 카드뮴 (Cd) 체외 배출효과-)

  • KIM Yuck-Yong;LEE Keun-Woo;KIM Geon-Bae;CHO Young Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.393-398
    • /
    • 2000
  • To extend utilization of alginate from the sea tangle, Laminaria japonicus, depolymerized alginates (HAG-10, average molecular weight 10,000; HAC-50, average molecular weight 50,000; HAG-100, average molecular weight 100,000) were obtained by hydrolysis of alginate by heating at $12^{\circ}C$. The effects of each depolymerized alginate on excretion of cholesterol, glucose and namium in rats were investigated. The total excretion rate (${\%}$) of cholesterol and cadmium was the highest in rats administered with HAG-50, The rate was $45.81{\%} and 59.02{\%} with HAG-50$. It was high in the order of $45.78{\%} and 56.05{\%}$ in HAG-100, $41.28{\%}$ and $55.96{\%}$ in alginate, and $32.11{\%} and 44.92{\%} in HAC-10$, respectively. In the case of HAG-50, it significantly (p<0.01) prevented the serum glucose level of rats from rising within 30 min and 60 min after glucose loading or administration among all the samples, but it had no particular effects on the serum insulin level. In conclusion, it was suggested that HAG-50, in which the alginate had a decreased molecular weight, while still retaining its desirable functions as a dietary fiber, was effective in excretion of harmful substances, such as cadmium and cholesterol, and in lowering glucose activities in serum of rats.

  • PDF

Design and Development of Multiple Input Device and Multiscale Interaction for GOCI Observation Satellite Imagery on the Tiled Display (타일드 디스플레이에서의 천리안 해양관측 위성영상을 위한 다중 입력 장치 및 멀티 스케일 인터랙션 설계 및 구현)

  • Park, Chan-Sol;Lee, Kwan-Ju;Kim, Nak-Hoon;Lee, Sang-Ho;Seo, Ki-Young;Park, Kyoung Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.541-550
    • /
    • 2014
  • This paper describes a multi-scale user interaction based tiled display visualization system using multiple input devices for monitoring and analyzing Geostationary Ocean Color Imager (GOCI) observation satellite imagery. This system provides multi-touch screen, Kinect motion sensing, and moblie interface for multiple users to control the satellite imagery either in front of the tiled display screen or far away from a distance to view marine environmental or climate changes around Korean peninsular more effectively. Due to a large amount of memory required for loading high-resolution GOCI satellite images, we employed the multi-level image load technique where the image was divided into small tiled images in order to reduce the load on the system and to be operated smoothly by user manipulation. This system performs the abstraction of common input information from multi-user Kinect motion and gestures, multi-touch points and mobile interaction information to enable a variety of user interactions for any tiled display application. In addition, the unit of time corresponding to the selected date of the satellite images are sequentially displayed on the screen and multiple users can zoom-in/out, move the imagery and select buttons to trigger functions.

Bending Effect of Laminated Plates with a Circular Hole Repaired by Single-Sided Patch Based on p-Convergent Full Layerwise Model (p-수렴 완전층별모델에 의한 일면패치로 보강된 원공 적층판의 휨효과)

  • Woo, Kwang-Sung;Yang, Seung-Ho;Ahn, Jae-Seok;Shin, Young-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.463-474
    • /
    • 2009
  • Double symmetric patch repair of existing structures always causes membrane action only, however, in many cases this technique is not practical. On the other hand, the bending stiffness of the patch and the skin increases as tensile loading is increased and affects the bending deformation significantly in the case of single-sided patch repair. In this study, the p-convergent full layerwise model has been proposed to determine the stress concentration factor in the vicinity of a circular hole as well as across the thickness of plates with single-sided patch repair. In assumed displacement field, the strain-displacement relations and 3-D constitutive equations of a layer are obtained by the combination of 2-D and 3-D hierarchical shape functions. The transfinite mapping technique has been used to represent a circular boundary and Gauss-Lobatto numerical integration is implemented in order to directly obtain stresses occurred at the nodal points of each layer without other extrapolation techniques. The accuracy and simplicity of the present model are verified with comparison of the previous results in literatures using experiment and conventional 3-D finite element. Also, the bending effect has been investigated with various patch types like square, circular and annular shape.

Development of a Multifunctional Design Concept to Improve Constructed Wetland Performance (인공습지의 성능향상을 위한 다기능 설계기법 개발)

  • Reyes, N.J.D.G.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • Constructed wetlands (CWs) are widely used to solve water quality problems caused by diffuse pollution from agricultural areas; however, phytoplankton blooms in CW systems can occur due to long hydraulic retention time (HRT), high nutrient loading, and exposure to sunlight. This study was conducted to evaluate the efficiency of a CW designed to treat agricultural diffuse pollution and develop a design concept to improve the nature-based capabilities of the system. Monitoring was conducted to assess contribution of individual wetland components (i.e. water, sediments, and plants) in the treatment performance of the system. During dry days, the turbidity and particulates concentration in the CW increased by 80 to 197% and 10 to 87%, respectively, due to the excessive growth of phytoplankton. On storm events, the concentration of particulates, organics, and nutrients were reduced by 43% to 70%, 22% to 49%, and 15% to 69% due to adequate water circulation and constant flushing of pollutants in the system. Based on the results, adequate water circulation is necessary to improve the performance of the CW. Free water surface CWs are usually designed to have a constant water level; however, the climate in South Korea is characterized by distinct dry and rainy seasons, which may not be suitable for this conventional design. This study presented a concept of multifunctional design in order to solve current CW design problems and improve the flood control, water quality management, and environmental functions of the facility.

Chitosan-alginate Gel Modified Poly (L-Lactic-co-ε-Caprolactone) (PLCL) as a Scaffold for Cartilage Tissue Engineering (변형된 키토산 알지네이트 겔 poly (L-Lactic-co-ε-Caprolactone) 지지체의 연골 조직 재생 평가)

  • Sutradhar, Bibek Chandra;Hwang, Yawon;Choi, Seokhwa;Kim, Gonhyung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • This study was designed in the fabricated poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold using chitosan-alginate hydrogel, which would be more suitable to maintain the biological and physiological functions continuing three dimensional spatial organizations for chondrocytes. As a scaffold, hydrogels alone is weak at endure complex loading within the body. In this study, we made cell hybrid scaffold constructs with poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold and hydrogels to make a three-dimensional composition of cells and extracellular matrix, which would be a mimic of a native cartilage. Using a particle leaching technique with NaCl, we fabricated a highly-elastic scaffold from PLCL with 85% porosity and $300-500{\mu}m$ pore size. A mixture of bovine chondrocytes and chitosan-alginate gel was seeded and compared with alginate as a control on the PLCL scaffold. The cell maturation, proliferation, extracellular matrix synthesis, glycosaminoglycans (sGAG) production and collagen type-II expressions were better in chondrocytes seeded in chitosan-alginate hydrogel than in alginate only. These results indicate that chondrocytes with chitosan-alginate gel on PLCL scaffolds provide an appropriate biomimetic environment for cell proliferation and matrix synthesis, which could successfully be used for cartilage repair and regeneration.

A Study on the Structural Optimization for Geodesic Dome (지오데식 돔의 구조최적화에 대한 연구)

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.47-55
    • /
    • 2008
  • This paper deals with basic theories and some numerical results on structural optimization for geodesic dome. First of all, the space efficiency of geodesic dome is investigated by using the ratio of icosahedron's surface area to the internal volume enclosed by it. The procedure how to create the geodesic dome is also provided in systematic way and implemented and utilized into the design optimization code ISADO-OPT. The mathematical programming technique is introduced to find out the optimum pattern of member size of geodesic dome against a point load. In this study, total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of geodesic dome are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The SLP, SQP and MFDM available in the optimizer DoT is used to search optimum member size patterns of geodesic dome. It is found to be that the optimum member size pattern can be efficiently obtained by using the proposed design optimization technique and numerical results can be used as benchmark test as a basic reference solution for design optimization of dome structures.

  • PDF

Axial Load Capacity Prediction of Single Piles in Clay and Sand Layers Using Nonlinear Load Transfer Curves (비선형 하중전이법에 의한 점토 및 모래층에서 파일의 지지력 예측)

  • Kim, Hyeongjoo;Mission, Joseleo;Song, Youngsun;Ban, Jaehong;Baeg, Pilsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.45-52
    • /
    • 2008
  • The present study has extended OpenSees, which is an open-source software framework DOS program for developing applications to idealize geotechnical and structural problems, for the static analysis of axial load capacity and settlement of single piles in MS Windows environment. The Windows version of OpenSees as improved by this study has enhanced the DOS version from a general purpose software program to a special purpose program for driven and bored pile analysis with additional features of pre-processing and post-processing and a user friendly graphical interface. The method used in the load capacity analysis is the numerical methods based on load transfer functions combined with finite elements. The use of empirical nonlinear T-z and Q-z load transfer curves to model soil-pile interaction in skin friction and end bearing, respectively, has been shown to capture the nonlinear soil-pile response under settlement due to load. Validation studies have shown the static load capacity and settlement predictions implemented in this study are in fair agreement with reference data from the static loading tests.

  • PDF

Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading (다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The typical truss-lattice material successively packed by repeated cubic symmetric unit cells consists of sub-elements (SE) proposed in this study. The representative continuum model for this truss-lattice material such as the effective strain and stress relationship can be formulated by the homogenization procedure based on the notation of averaged mechanical properties. The volume fractions of micro-scale struts have a significant influence on the effective strength as well as the relative density in the lattice plate with replicable unit cell structures. Most of the strength contribution in the lattice material is induced by axial stiffness under uniform stretching or compression responses. Therefore, continuum based constitutive models composed of homogenized member stiffness include these mechanical characteristics with respect to strength, internal stress state, material density based on the volume fraction and even failure modes. It can be also recognized that the stress state of micro-scale struts is directly associated with the continuum constitutive model. The plastic flow at the micro-scale stress can extend the envelope of the analytical stress function on the surface of macro-scale stress derived from homogenized constitutive equations. The main focus of this study is to investigate the basic topology of unit cell structures with the cubic symmetric system and to formulate the plastic models to predict pressure dependent macro-scale stress surface functions.