• Title/Summary/Keyword: functionally gradient

검색결과 253건 처리시간 0.038초

닥터블레이드법에 의한 PLZT계 경사기능 압전 엑튜에이터의 제조와 압전 변위 특성 (Fabrication and Piezoelectric Strain Characteristics of PLZT Functionally Gradient Piezoelectric Actuator by Doctor Blade Process)

  • 김한수;최승철;이전국;정형진
    • 한국세라믹학회지
    • /
    • 제29권9호
    • /
    • pp.695-704
    • /
    • 1992
  • In (Pb, La)(Zr, Ti)O3 ceramic system, the functionally gradient material (FGM) was developed, and its processing and properties were investigated. The FGMs were successfully prepared through doctor blade method with acrylic binder system as well as mold stacking press method. The ultrasonic treatment was very effective for particle dispersion in slurry, and it lead to form clack-free green films. The strain-voltage characteristics of the FGM system was significantly improved which fabricated between a high piezoelectric-low dielectric and a low piezoelectric-high dielectric composition layer.

  • PDF

인공 관절 설계를 위한 바이오미메틱 복합재료에 관한 연구 (A Study on Biomimetic Composite for Design of Artificial Hip Joint)

  • 김명욱;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.234-238
    • /
    • 1999
  • This study suggests the design of the functionally gradient composite, [0/90/0/core]$_s$ cross-ply laminate, to prevent stress concentration induced from the difference of rigidity between the bone and the artificial hip joint and to reinforce the wear property of the surface and the expectation of their mechanical properties. First, the four-point bending test is done about wet bones and dry bones to know the mechanical properties of the cortical bones. In result, the wet bone shows the viscoelastic behavior and the dry bone shows the elastic behavior. Moreover, we expect the properties of the proposed gradient composites as a function of carbon fiber volume fraction in each layer to apply Halpin-Tsai equation, CLPT(classical laminate plate theory), and Bernoulli beam theory etc. and decide the thickness ratio of each lamina in order to match Young's modulus of the anisotropic cortical bone with the proposed gradient composites.

  • PDF

Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects

  • Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.169-186
    • /
    • 2020
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), mechanical-hygro-thermal vibrational analyzes of shear deformable porous functionally graded (FG) nanoplate on visco-elastic medium has been performed. The presented formulation incorporates two scale factors for examining vibrational behaviors of nano-dimension plates more accurately. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. It is supposed that the nano-size plate is exposed to hygro-thermal and variable compressive mechanical loadings. The governing equations achieved by Hamilton's principle are solved implementing DQM. Presented results indicate the prominence of moisture/temperature variation, damping factor, material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational frequencies of FG nano-size plate.

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.

Nonlinear resonance of porous functionally graded nanoshells with geometrical imperfection

  • Wu-Bin Shan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.355-368
    • /
    • 2023
  • Employing the non-local strain gradient theory (NSGT), this paper investigates the nonlinear resonance characteristics of functionally graded material (FGM) nanoshells with initial geometric imperfection for the first time. The effective material properties of the porous FGM nanoshells with even distribution of porosities are estimated by a modified power-law model. With the guidance of Love's thin shell theory and considering initial geometric imperfection, the strain equations of the shells are obtained. In order to characterize the small-scale effect of the nanoshells, the nonlocal parameter and strain gradient parameter are introduced. Subsequently, the Euler-Lagrange principle was used to derive the motion equations. Considering three boundary conditions, the Galerkin principle combined with the modified Lindstedt Poincare (MLP) method are employed to discretize and solve the motion equations. Finally, the effects of initial geometric imperfection, functional gradient index, strain gradient parameters, non-local parameters and porosity volume fraction on the nonlinear resonance of the porous FGM nanoshells are examined.

Vibration behavior of bi-dimensional functionally graded beams

  • Selmi, Abdellatif
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.587-599
    • /
    • 2021
  • Based on Euler-Bernoulli beam theory and continuous element method, the free vibration of bi-dimensional functionally graded beams is investigated. It is assumed that the material properties vary exponentially along the beam thickness and length. The characteristic frequency equations of beams with different boundary conditions are obtained by transfer matrix method. The validity of the proposed method is assessed through comparison with available results. Parametric studies are carried out to analyze the influences of the gradient indexes and the beam slenderness ratio on the natural frequencies of bi-dimensional functionally graded beams.

균열이 있는 기능경사 압전 세라믹의 충격 특성에 관한 연구 (Transient Response of Functionally Graded Piezoelectric Ceramic with Crack)

  • Jeong Woo Shin;Tae-Uk Kim;Sung Chan Kim
    • Composites Research
    • /
    • 제16권5호
    • /
    • pp.21-27
    • /
    • 2003
  • 선형 압전 이론(theory of linear piezoelectricity)을 이용하여 면외전단 충격(anti-plane shear impact)을 받는 기능경사 압전 세라믹(functionally graded piezoelectric ceramic)의 중앙에 존재하는 균열(central crack)의 동적 응답에 대해 연구한다. 기능경사 압전재료의 물성치(material property)는 두께방향을 따라 연속적으로 변한다고 가정한다. 라플라스 변환(Laplace transform)과 푸리에 변환(Fourier transform)을 사용하여 두 쌍의 복합적분 방정식을 구성하며, 이를 제2종 Fredholm 적분 방정식(Fredholm integral equations of the second kind)으로 표현한다. 재료 물성치의 변화도(gradient of material properties)와 전기하중(electric loading)의 영향을 보기 위해 동응력세기계수(dynamic stress intensity factor)에 대한 수치 결과를 제시하였다.

Non-linear analysis of dealamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.97-111
    • /
    • 2017
  • The present paper reports an analytical study of delamination fracture in the Mixed Mode Flexure (MMF) functionally graded beam with considering the material non-linearity. The mechanical behavior of MMF beam is modeled by using a non-linear stress-strain relation. It is assumed that the material is functionally graded along the beam height. Fracture behavior is analyzed by the J-integral approach. Non-linear analytical solution is derived of the J-integral for a delamination located arbitrary along the beam height. The J-integral solution derived is verified by analyzing the strain energy release rate with considering the non-linear material behavior. The effects of material gradient, crack location along the beam height and material non-linearity on the fracture are evaluated. It is found that the J-integral value decreases with increasing the upper crack arm thickness. Concerning the influence of material gradient on the non-linear fracture, the analysis reveals that the J-integral value decreases with increasing the ratio of modulus of elasticity in the lower and upper edge of the beam. It is found also that non-linear material behavior leads to increase of the J-integral value. The present study contributes for the understanding of fracture in functionally graded beams that exhibit material non-linearity.

Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory

  • Cuong-Le, Thanh;Nguyen, Khuong D.;Le-Minh, Hoang;Phan-Vu, Phuong;Nguyen-Trong, Phuoc;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.441-455
    • /
    • 2022
  • This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.

고온에서 외부 가진력을 받는 회전하는 경사기능 박판 블레이드의 동적응답 해석 (Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady Temperature and External Excitation)

  • 오병영;나성수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.643-648
    • /
    • 2004
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics are provided for the case of a biconvex cross section and pertinent conclusions are outlined.

  • PDF