• Title/Summary/Keyword: functionally graded sandwich beam

Search Result 33, Processing Time 0.019 seconds

An analytical method for free vibration analysis of functionally graded sandwich beams

  • Bouakkaz, K.;Hadji, L.;Zouatnia, N.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.59-73
    • /
    • 2016
  • In this paper, a hyperbolic shear deformation beam theory is developed for free vibration analysis of functionally graded (FG) sandwich beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded sandwich beam are assumed to vary according to power law distribution of the volume fraction of the constituents. The core layer is still homogeneous and made of an isotropic material. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Illustrative examples are given to show the effects of varying gradients and thickness to length ratios on free vibration of functionally graded sandwich beams.

Bending analysis of softcore and hardcore functionally graded sandwich beams

  • Hadji, Lazreg;Safa, Abdelkader
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.481-492
    • /
    • 2020
  • A New hyperbolic shear deformation theory is developed for the bending analysis of softcore and hardcore functionally graded sandwich beams. This theory satisfies the equilibrium conditions at the top and bottom faces of the sandwich beam and does not require the shear correction factor. The governing equations are derived from the principle of virtual work. Sandwich beams have functionally graded skins and two types of homogenous core (softcore and hardcore). The material properties of functionally graded skins are graded through the thickness according to the power-law distribution. The Navier solution is used to obtain the closed form solutions for simply supported FGM sandwich beams. The accuracy and effectiveness of proposed theory are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses, and sandwich beam type on the bending responses of functionally graded sandwich beams.

Forced vibration analysis of functionally graded sandwich deep beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • This paper presents forced vibration analysis of sandwich deep beams made of functionally graded material (FGM) in face layers and a porous material in core layer. The FGM sandwich deep beam is subjected to a harmonic dynamic load. The FGM in the face layer is graded though the layer thickness. In order to get more realistic result for the deep beam problem, the plane solid continua is used in the modeling of The FGM sandwich deep beam. The equations of the problem are derived based the Hamilton procedure and solved by using the finite element method. The novelty in this paper is to investigate the dynamic responses of sandwich deep beams made of FGM and porous material by using the plane solid continua. In the numerical results, the effects of different material distributions, porosity coefficient, geometric and dynamic parameters on the dynamic responses of the FGM sandwich deep beam are investigated and discussed.

Free vibration analysis of edge cracked symmetric functionally graded sandwich beams

  • Cunedioglu, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1003-1020
    • /
    • 2015
  • In this study, free vibration analysis of an edge cracked multilayered symmetric sandwich beams made of functionally graded materials are investigated. Modelling of the cracked structure is based on the linear elastic fracture mechanics theory. Material properties of the functionally graded beams change in the thickness direction according to the power and exponential laws. To represent functionally graded symmetric sandwich beams more realistic, fifty layered beam is considered. Composition of each layer is different although each layer is isotropic and homogeneous. The considered problem is carried out within the Timoshenko first order shear deformation beam theory by using finite element method. A MATLAB code developed to calculate natural frequencies for clamped and simply supported conditions. The obtained results are compared with published studies and excellent agreement is observed. In the study, the effects of crack location, depth of the crack, power law index and slenderness ratio on the natural frequencies are investigated.

A new higher-order shear and normal deformation theory for functionally graded sandwich beams

  • Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.521-546
    • /
    • 2015
  • A new refined hyperbolic shear and normal deformation beam theory is developed to study the free vibration and buckling of functionally graded (FG) sandwich beams under various boundary conditions. The effects of transverse shear strains as well as the transverse normal strain are taken into account. Material properties of the sandwich beam faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending, free vibration and buckling analyses are obtained for simply supported sandwich beams. Illustrative examples are given to show the effects of varying gradients, thickness stretching, boundary conditions, and thickness to length ratios on the bending, free vibration and buckling of functionally graded sandwich beams.

Buckling and bending analyses of a sandwich beam based on nonlocal stress-strain elasticity theory with porous core and functionally graded facesheets

  • Mehdi, Mohammadimehr
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.279-298
    • /
    • 2022
  • In this paper, the important novelty and the defining a physical phenomenon of the resent research is the development of nonlocal stress and strain parameters on the porous sandwich beam with functionally graded materials in the top and bottom face sheets.Also, various beam models including Euler-Bernoulli, Reddy and the generalized formulation of two-variable beam theories are obtained in this research. According to a nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Thus, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It can be seen that the critical buckling load and transverse deflection of sandwich beam by considering both nonlocal stress-strain parameters is higher than the nonlocal stress parameter. On the other hands, it is noted that by considering the nonlocal stress-strain parameters simultaneously becomes the actual case.

A quasi-3D nonlocal theory for free vibration analysis of functionally graded sandwich nanobeams on elastic foundations

  • Mofareh Hassan Ghazwani;Ali Alnujaie;Pham Van Vinh;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.313-324
    • /
    • 2024
  • The main aims of this study are to develop a new nonlocal quasi-3D theory for the free vibration behaviors of the functionally graded sandwich nanobeams. The sandwich beams consist of a ceramic core and two functionally graded material layers resting on elastic foundations. The two layers, linear spring stiffness and shear layer, are used to model the effects of the elastic foundations. The size-effect is considered using nonlocal elasticity theory. The governing equations of the motion of the functionally graded sandwich nanobeams are obtained via Hamilton's principle in combination with nonlocal elasticity theory. Then the Navier's solution technique is used to solve the governing equations of the motion to achieve the nonlocal free vibration behaviors of the nanobeams. A deep parametric study is also provided to demonstrate the effects of some parameters, such as length-to-height ratio, power-law index, nonlocal parameter, and two parameters of the elastic foundation, on the free vibration behaviors of the functionally graded sandwich nanobeams.

Vibration of elastically supported bidirectional functionally graded sandwich Timoshenko beams on an elastic foundation

  • Wei-Ren Chen;Liu-Ho Chiu;Chien-Hung Lin
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.197-209
    • /
    • 2024
  • The vibration of elastically supported bidirectional functionally graded (BDFG) sandwich beams on an elastic foundation is investigated. The sandwich structure is composed of upper and lower layers of BDFG material and the core layer of isotropic material. Material properties of upper and lower layers are assumed to vary continuously along the length and thickness of the beam with a power-law function. Hamilton's principle is used to deduce the vibration equations of motion of the sandwich Timoshenko beam. Then, the partial differential equation of motion is spatially discretized into a time-varying ordinary differential equation in terms of Chebyshev differential matrices. The eigenvalue equation associated with the free vibration is formulated to study the influence of various slenderness ratios, material gradient indexes, thickness ratios, foundation and support spring constants on the vibration frequency of BDFG sandwich beams. The present method can provide researchers with deep insight into the impact of various geometric, material, foundation and support parameters on the vibration behavior of BDFG sandwich beam structures.

Static analysis of functionally graded non-prismatic sandwich beams

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Mokhtari, M.
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.165-190
    • /
    • 2018
  • In this article, the static behavior of non-prismatic sandwich beams composed of functionally graded (FG) materials is investigated for the first time. Two types of beams in which the variation of elastic modulus follows a power-law form are studied. The principle of minimum total potential energy is applied along with the Ritz method to derive and solve the governing equations. Considering conventional boundary conditions, Chebyshev polynomials of the first kind are used as auxiliary shape functions. The formulation is developed within the framework of well-known Timoshenko and Reddy beam theories (TBT, RBT). Since the beams are simultaneously tapered and functionally graded, bending and shear stress pushover curves are presented to get a profound insight into the variation of stresses along the beam. The proposed formulations and solution scheme are verified through benchmark problems. In this context, excellent agreement is observed. Numerical results are included considering beams with various cross sectional types to inspect the effects of taper ratio and gradient index on deflections and stresses. It is observed that the boundary conditions, taper ratio, gradient index value and core to the thickness ratio significantly influence the stress and deflection responses.

Higher order free vibration of sandwich curved beams with a functionally graded core

  • Fard, K. Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.537-554
    • /
    • 2014
  • In this paper, free vibration of a sandwich curved beam with a functionally graded (FG) core was investigated. Closed-form formulations of two-dimensional (2D) refined higher order beam theory (RHOBT) without neglecting the amount of z/R was derived and used. The present RHOBT analysis incorporated a trapezoidal shape factor that arose due to the fact that stresses through the beam thickness were integrated over a curved surface. The solutions presented herein were compared with the available numerical and analytical solutions in the related literature and excellent agreement was obtained. Effects of some dimensionless parameters on the structural response were investigated to show their effects on fundamental natural frequency of the curved beam. In all the cases, variations of the material constant number were calculated and presented. Effect of changing ratio of core to beam thickness on the fundamental natural frequency depended on the amount of the material constant number.