• Title/Summary/Keyword: functional images

Search Result 504, Processing Time 0.024 seconds

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

The Ability of Muscle Functional MRI to Detect the Slight Effect of Exercise on Trunk Muscle Activity

  • Tawara, Noriyuki
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2022
  • Purpose: In this study, we provide a way to assess even a slight effect of exercise on trunk-muscle activity. Materials and Methods: Seven healthy male participants (mean age, 24.7 ± 3.2 years; height, 171.2 ± 9.8 cm; and weight, 63.8 ± 11.9 kg) performed 15 sets of an exercise with 20 repetitions of 90° hip and right-knee flexion while lying supine. The exercise intensity was measured using the 10-point Rating of Perceived Exertion Scale after the first and 15th sets of exercises. Although cross-sectional areas and functional T2 mapping using ultrafast imaging (fast-acquired muscle functional magnetic resonance imaging, fast-mfMRI) have been proposed for imaging to evaluate exercise-induced muscle activity in real time, no previous studies have reported on the evaluation of trunk-muscle activity using functional T2 mapping. As a method for assessing trunk-muscle activity, we compared functional T2 mapping using ultrafast imaging (fast-mfMRI) with cross-sectional areas. Results: Although the muscle cross-sectional areas were increased by the exercise, there was no significant difference at rest. On the other hand, for all sets, the changes in T2 were significant compared with those at rest (P < 0.01). These results demonstrate that T2, calculated from fast-mfMRI images can be used to detect even a small amount of muscle activity induced by acute exercise, which was impossible to do with cross-sectional areas. Conclusion: Fast-mfMRI, which can also display functional information with detailed forms, enabled non-invasive real-time imaging for identifying and evaluating the degree of deep trunk-muscle activity induced by exercise.

Multimodal Nonlinear Optical Microscopy for Simultaneous 3-D Label-Free and Immunofluorescence Imaging of Biological Samples

  • Park, Joo Hyun;Lee, Eun-Soo;Lee, Jae Yong;Lee, Eun Seong;Lee, Tae Geol;Kim, Se-Hwa;Lee, Sang-Won
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.551-557
    • /
    • 2014
  • In this study, we demonstrated multimodal nonlinear optical (NLO) microscopy integrated simultaneously with two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) in order to obtain targeted cellular and label-free images in an immunofluorescence assay of the atherosclerotic aorta from apolipoprotein E-deficient mice. The multimodal NLO microscope used two laser systems: picosecond (ps) and femtosecond (fs) pulsed lasers. A pair of ps-pulsed lights served for CARS (817 nm and 1064 nm) and SHG (817 nm) images; light from the fs-pulsed laser with the center wavelength of 720 nm was incident into the sample to obtain autofluorescence and targeted molecular TPEF images for high efficiency of fluorescence intensity without cross-talk. For multicolor-targeted TPEF imaging, we stained smooth-muscle cells and macrophages with fluorescent dyes (Alexa Fluor 350 and Alexa Fluor 594) for an immunofluorescence assay. Each depth-sectioned image consisted of $512{\times}512$ pixels with a field of view of $250{\times}250{\mu}m^2$, a lateral resolution of $0.4{\mu}m$, and an axial resolution of $1.3{\mu}m$. We obtained composite multicolor images with conventional label-free NLO images and targeted TPEF images in atherosclerotic-plaque samples. Multicolor 3-D imaging of atherosclerotic-plaque structural and functional composition will be helpful for understanding the pathogenesis of cardiovascular disease.

A Development of a Automatic Detection Program for Traffic Conflicts (차량상충 자동판단프로그램 개발)

  • Min, Joon-Young;Oh, Ju-Taek;Kim, Myung-Seob;Kim, Tae-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.64-76
    • /
    • 2008
  • To increase road safety at blackspots, it is needed to develop a new method that can process before accident occurrence. Accident situation could result from traffic conflict. Traffic conflict decision technique has an advantage that can acquire and analyze data in time and confined space that is less through investigation. Therefore, traffic conflict technique is highly expected to be used in many application of road safety. This study developed traffic conflict decision program that can analyze and process from signalized intersection image. Program consists of the following functional modules: an image input module that acquires images from the CCTV camera, a Save-to-Buffer module which stores the entered images by differentiating them into background images, current images, difference images, segmentation images, and a conflict detection module which displays the processed results. The program was developed using LabVIEW 8.5 (a graphic language) and the VISION module library.

  • PDF

The development of food image detection and recognition model of Korean food for mobile dietary management

  • Park, Seon-Joo;Palvanov, Akmaljon;Lee, Chang-Ho;Jeong, Nanoom;Cho, Young-Im;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The aim of this study was to develop Korean food image detection and recognition model for use in mobile devices for accurate estimation of dietary intake. MATERIALS/METHODS: We collected food images by taking pictures or by searching web images and built an image dataset for use in training a complex recognition model for Korean food. Augmentation techniques were performed in order to increase the dataset size. The dataset for training contained more than 92,000 images categorized into 23 groups of Korean food. All images were down-sampled to a fixed resolution of $150{\times}150$ and then randomly divided into training and testing groups at a ratio of 3:1, resulting in 69,000 training images and 23,000 test images. We used a Deep Convolutional Neural Network (DCNN) for the complex recognition model and compared the results with those of other networks: AlexNet, GoogLeNet, Very Deep Convolutional Neural Network, VGG and ResNet, for large-scale image recognition. RESULTS: Our complex food recognition model, K-foodNet, had higher test accuracy (91.3%) and faster recognition time (0.4 ms) than those of the other networks. CONCLUSION: The results showed that K-foodNet achieved better performance in detecting and recognizing Korean food compared to other state-of-the-art models.

"Say Hello to Vietnam!": A Multimodal Analysis of British Travel Blogs

  • Thuy T.H. Tran
    • SUVANNABHUMI
    • /
    • v.15 no.2
    • /
    • pp.91-129
    • /
    • 2023
  • This paper reports the findings of a multimodal study conducted on 10 travel blog posts about Vietnam by seven British professional travel bloggers. The study takes a sociolinguistic view to tourism by seeing travel blogs as a source for linguistic and other semiotic materials while considering language as situated practice for the social construction of fundamental categories such as "human," "society," and "nation." It borrows concepts from Halliday's Systemic Functional Linguistics for interpersonal metafunction to develop an analytical framework to study how the co-occurrence of text and still images in these travel blog posts formulated the portrayal of Vietnam as a tourism destination and indicated the main sociolinguistic features of the blogs. The analysis of appreciation values and interactive qualities encoded in evaluative adjectives and still images show that Vietnam is generally portrayed as a country of identity and diversity. It provides tourists with positive experiences in terms of places of interest, food and local lifestyles and is cost-competitive. Strangerhood and authenticity are two outstanding sociolinguistic features exhibited in these travel blog posts. The findings of this study also underline the co-contribution of the linguistic sign, in this case evaluative adjectives, and the visual sign, in this case still images, as interpersonal meaning-making resources. To portray Vietnam, still images served as integral elements to evidence the credibility of verbal narrations. To unveil sociolinguistic characteristics of travel blogs, still images supported the linguistic realizations of authenticity and strangerhood on the posts, and in some case delivered an even stronger message than words. Not only does the study present a source of feedback from international travelers to tourism practice in Vietnam, but it also provides insights into multimodal analysis of tourism discourse which remains an under-researched area in Vietnam.

Autism and Beauty: Neural Correlates of Aesthetic Experiences in Autism Spectrum Disorder

  • Park, Seong Kyoung;Son, Jung-Woo;Chung, Seungwon;Lee, Seungbok;Ghim, Hei-Rhee;Lee, Sang-Ick;Shin, Chul-Jin;Kim, Siekyeong;Ju, Gawon;Choi, Sang Cheol;Kim, Yang Yeol;Koo, Young Jin;Kim, Bung-Nyun;Yoo, Hee Jeong
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.29 no.3
    • /
    • pp.101-113
    • /
    • 2018
  • Objectives: The purpose of this study was to investigate whether the neural activity of autism spectrum disorder (ASD) patients is different from that of normal individuals when performing aesthetic judgments. Methods: We recruited typical ASD patients without savant skills (ASD group, n=17) and healthy controls (HC group, n=19) for an functional magnetic resonance imaging study. All subjects were scanned while performing aesthetic judgment tasks on two kinds of artwork (magnificent landscape images and fractal images). Differences in brain activation between the two groups were assessed by contrasting neural activity during the tasks. Results: The aesthetic judgment score for all images was significantly lower in the ASD group than in the HC group. During the aesthetic judgment tasks, the ASD group showed less activation than the HC group in the anterior region of the superior frontal gyrus, and more activation in the temporoparietal area and insula, regardless of the type of images being judged. In addition, during the aesthetic judgment task for the fractal images, the ASD group exhibited greater neural activity in the amygdala and the posterior region of the middle/inferior temporal gyrus (Brodmann area 37) than the HC group. Conclusion: The results of this study suggest that the brain activation patterns associated with aesthetic experiences in ASD patients may differ from those of normal individuals.

Three-dimensional functional unit analysis of hemifacial microsomia mandible-a preliminary report

  • Choi, Ji Wook;Kim, Byung Hoon;Kim, Hyung Soo;Yu, Tae Hoon;Kim, Bong Chul;Lee, Sang-Hwy
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.28.1-28.7
    • /
    • 2015
  • Background: The aim of this study was to present three-dimensional (3D) structural characteristics of the mandible in the hemifacial microsomia. The mandible has six distinct functional units, and its architecture is the sum of balanced growth of each functional unit and surrounding matrix. Methods: In order to characterize the mandibular 3D architecture of hemifacial microsomia, we analyzed the mandibular functional units of four hemifacial microsomia patients using the 3D reconstructed computed tomography (CT) images. And we compared the functional unit size between affected and non-affected side. Results: The length of condyle and angle showed significant differences between affected and non-affected sides. However, the length of mandibular body showed insignificant differences. The size differences between affected and non-affected side were observed at the condyle, angle, and body in descending order. Conclusions: This preliminary study suggests that the main etiopathogenic units are condyle and angle in the hemifacial microsomia mandible. Further investigation with the increased number of subjects will be helpful to establish treatment modality by etiopathogenic targeting of hemifacial microsomia.

Anatomic coracoclavicular ligament reconstruction with triple flip-buttons leads to good functional outcomes and low reduction loss: a case series

  • Raul Aguila;Gonzalo Gana;J Tomas Munoz;Diego Garcia de la Pastora;Andres Oyarzun;Gabriel Mansilla;Sebastian Coda;J Tomas Rojas
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.140-147
    • /
    • 2023
  • Background: The management of acromioclavicular (AC) joint dislocation remains controversial. Recently, anatomic coracoclavicular (CC) fixation with a double clavicular tunnel and three flip-buttons has shown promising results. This study aimed to evaluate functional and radiological outcomes in patients with high-grade AC joint dislocation treated with anatomic CC fixation using double clavicular tunnels and three flip-buttons. Methods: A retrospective, unicentric study was performed. The study included patients with high-grade AC joint dislocation who underwent surgery with anatomic CC fixation using double clavicular tunnels and three flip-buttons. Demographic data were obtained from medical records. A functional evaluation using subjective shoulder value (SSV), visual analog scale (VAS), and disabilities of the arm, shoulder, and hand (DASH) questionnaires was performed, and an evaluation of preoperative and postoperative comparative Zanca view images was performed. Factors associated with functional outcomes and radiological AC reduction were analyzed. Results: A total of 83 patients completed follow-up and were included in the analysis. The mean SSV, VAS, and DASH scores were 92.8, 0.8, and 6.4, respectively. Patients who had complications experienced significantly worse functional outcomes (DASH: P=0.037). Suboptimal final AC reduction was observed in nine patients (11.1%), and significantly more frequently in patients older than 40 years (P=0.031) and in surgeries performed more than 7 days after injury (P=0.034). There were two reoperations (2.4%). Conclusions: Anatomic CC fixation with a double clavicular tunnel and three flip-buttons leads to good functional outcomes, low complication rates, and high rates of optimal AC reduction.

Dynamic Chest X-Ray Using a Flat-Panel Detector System: Technique and Applications

  • Akinori Hata;Yoshitake Yamada;Rie Tanaka;Mizuki Nishino;Tomoyuki Hida;Takuya Hino;Masako Ueyama;Masahiro Yanagawa;Takeshi Kamitani;Atsuko Kurosaki;Shigeru Sanada;Masahiro Jinzaki;Kousei Ishigami;Noriyuki Tomiyama;Hiroshi Honda;Shoji Kudoh;Hiroto Hatabu
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.634-651
    • /
    • 2021
  • Dynamic X-ray (DXR) is a functional imaging technique that uses sequential images obtained by a flat-panel detector (FPD). This article aims to describe the mechanism of DXR and the analysis methods used as well as review the clinical evidence for its use. DXR analyzes dynamic changes on the basis of X-ray translucency and can be used for analysis of diaphragmatic kinetics, ventilation, and lung perfusion. It offers many advantages such as a high temporal resolution and flexibility in body positioning. Many clinical studies have reported the feasibility of DXR and its characteristic findings in pulmonary diseases. DXR may serve as an alternative to pulmonary function tests in patients requiring contact inhibition, including patients with suspected or confirmed coronavirus disease 2019 or other infectious diseases. Thus, DXR has a great potential to play an important role in the clinical setting. Further investigations are needed to utilize DXR more effectively and to establish it as a valuable diagnostic tool.