• 제목/요약/키워드: functional element

Search Result 646, Processing Time 0.025 seconds

Reduction of functionally graded material (FGM) layers for joining dissimilar ceramics in Si3N4-Al2O3 system using polytypoid functional gradients (폴리타이포이드 기능경사를 이용한 Si3N4-Al2O3 계 이종 세라믹 간 접합을 위한 기능경사재료(FGM) 적층의 저감)

  • Ryu, Sae-Hui;Park, Jong-Ha;Lee, Seon-Yeong;Lee, Jae-Cheol;An, Seong-Hun;Hong, Hyeon-Jeong;Ryu, Do-Hyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2007.11a
    • /
    • pp.117.1-117.1
    • /
    • 2007
  • PDF

Reduced Finite Element Simulation of Cold Forging Processes Based on the Forming Experiment (성형실험을 통한 냉간단조 공정의 단축 유한요소 시뮬레이션)

  • Lee, Chung-Ho
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.395-399
    • /
    • 1997
  • There exists a certain functional relation between Vickers hardness and flow stress in the strain-hardened material. Using this relation, the Vickers hardness values in the strain-hardened material can be converted into the flow stress values in good approximation. Therefore, the information about the flow stress distribution in the material can be easily acquired through a forming experiment. That makes it possible to simulate the process state for a critical moment of cold forging under the given boundary conditions very quickly without calculating the foregoing history of the actual deformation from the beginning.

  • PDF

The Composite in Train Exterior & Interior Design (복합소재 철도차량의 실내외 디자인 연구)

  • Han Suk Woo;Jin Mi ja;Cho Se Hyun;Lee Seung Chul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.59-62
    • /
    • 2004
  • According to the change of industry structure, design is the key element to accelerate enhance the value of railway industry as they core competence factors for productive and superiority its level. It is important utilizing materials to embody new train aesthetics and build high technologies. Consequently, apply properties of composite with design formative attribute also functional usability and technology system.

  • PDF

A Study on Properties of Water on Space (건축공간에서 물(水)의 특성에 관한 연구)

  • Min, Young-Gi
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2008
  • This study is primarily concerned with the relationship between the substantial nature of water and water space, defined as the container of water, when water is used as an element of design. In order to achieve the objective set up, the writer discusses the important properties of water. As the functional meaning of 'water' has been changed to the natural harmony or agreement with human, both the exterior shape of architectural structures and their internal meanings should be taken into account, if the water space is to be suitable for humans.

  • PDF

Preparation and Heating Characteristics of N-doped Graphite Fiber as a Heating Element (질소가 도핑 된 흑연섬유 발열체의 제조 및 발열특성)

  • Kim, Min-Ji;Lee, Kyeong Min;Lee, Sangmin;Yeo, Sang Young;Choi, Suk Soon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.80-86
    • /
    • 2017
  • In this study, nitrogen functional groups were introduced on graphite fiber (GF) to modify their electrical properties, and heating properties were investigated according to the treatment conditions. GF was prepared by a thermal solid-state reaction at $200^{\circ}C$ for 2 h. Surface properties of the nitrogen doped GF were examined by XPS, and its resistance and heating temperature were measured using a programmable electrometer and thermo-graphic camera, respectively. The XPS result showed that the nitrogen functional groups on the GF surface were increased with increasing of urea contents, and the heating property of the GF was also improved as nitrogen functional groups were introduced. The maximum heating temperature of GF treated by urea was $53.8^{\circ}C$ at 60 V, which showed 55% improved heating characteristics compared to that of non-treated GF. We ascribe this effect to introduced nitrogen functional groups on the GF surface by thermal solid-state reaction, which significantly affects the heating characteristics of GF.

Material as a Key Element of Fashion Trend in 2010~2019 - Text Mining Analysis - (패션 트렌트(2010~2019)의 주요 요소로서 소재 - 텍스트마이닝을 통한 분석 -)

  • Jang, Namkyung;Kim, Min-Jeong
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.551-560
    • /
    • 2020
  • Due to the nature of fashion design that responds quickly and sensitively to changes, accurate forecasting for upcoming fashion trends is an important factor in the performance of fashion product planning. This study analyzed the major phenomena of fashion trends by introducing text mining and a big data analysis method. The research questions were as follows. What is the key term of the 2010SS~2019FW fashion trend? What are the terms that are highly relevant to the key trend term by year? Which terms relevant to the key trend term has shown high frequency in news articles during the same period? Data were collected through the 2010SS~2019FW Pre-Trend data from the leading trend information company in Korea and 45,038 articles searched by "fashion+material" from the News Big Data System. Frequency, correlation coefficient, coefficient of variation and mapping were performed using R-3.5.1. Results showed that the fashion trend information were reflected in the consumer market. The term with the highest frequency in 2010SS~2019FW fashion trend information was material. In trend information, the terms most relevant to material were comfort, compact, look, casual, blend, functional, cotton, processing, metal and functional by year. In the news article, functional, comfort, sports, leather, casual, eco-friendly, classic, padding, culture, and high-quality showed the high frequency. Functional was the only fashion material term derived every year for 10 years. This study helps expand the scope and methods of fashion design research as well as improves the information analysis and forecasting capabilities of the fashion industry.

New Approach to Predict microRNA Gene by using data Compression technique

  • Kim, Dae-Won;Yang, Joshua SungWoo;Kim, Pan-Jun;Chu, In-Sun;Jeong, Ha-Woong;Park, Hong-Seog
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.361-365
    • /
    • 2005
  • Over the past few years, the complex and subtle roles of microRNA (miRNA) in gene regulation have been increasingly appreciated. Computational approaches have played one of important roles in identifying miRNAs from plant and animals, as well as in predicting their putative gene target. We present a new approach of comprehensive analysis of the evolutionarily conserved element scores and applied data compression technique to detect putative miRNA genes. We used the evolutionarily conserved elements [19] (see more detail on method and material) to calculate for base-by-base along the candidate pre-miRNA gene region by detecting common conserved pattern from target sequence. We applied the data compression technique [20] to detect unknown miRNA genes. This zipping method devises, without loss of generality with respect to the nature of the character strings, a method to measure the similarity between the strings under consideration [20]. Our experience to using our new computational method for detecting miRNA gene identification (or miRNA gene prediction) has been stratified and we were able to find 28 putative miRNA genes.

  • PDF

Functional Analysis of the Putative BUB2 Homologues of C. elegans in the Spindle Position Checkpoint

  • Lee, Kyung-Hee;Song, Ki-Won
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.87-94
    • /
    • 2005
  • Spindle position checkpoint monitors the orientation of mitotic spindle for proper segregation of replicated chromosomes into mother cell and the daughter, and prohibits mitotic exit when mitotic spindle is misaligned. BUB2 forms one of the key upstream element of spindle position checkpoint in budding yeast, but its functional homologues have not been identified in higher eukaryotes. Here, we analyzed the functions of two putative BUB2 homologues of C. elegans in the spindle orientation checkpoint. From the C. elegans genome database, we found that two open reading frames (ORFs), F35H12_2 and C33F10_2, showed high sequence homology with BUB2. We obtained the expressed sequence tag (EST) clones for F35H12_2 (yk221d4) and C33F10_2 (yk14e10) and verified the full cDNA for each ORF by sequencing and 5' RACE with SL1 primer. The functional complementation assays of yk221d4 and yk14e10 in ${\Delta}bub2$ of S. cerevisiae revealed that these putative BUB2 homologues of C. elegans could not replace the function of BUB2 in spindle position checkpoint and mitotic exit. Our attempt to document the component of spindle position checkpoint in metazoans using sequence homology was not successful. This suggests that structural information about its components might be required to identify functional homologues of the spindle position checkpoint in higher eukaryotes.

Photocatalytic CO2 Reduction over g-C3N4 Based Materials

  • Cai, Wei-Qin;Zhang, Feng-Jun;Kong, Cui;Kai, Chun-Mei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.581-588
    • /
    • 2020
  • Reducing CO2 into high value fuels and chemicals is considered a great challenge in the 21st century. Efficiently activating CO2 will lead to an important way to utilize it as a resource. This article reviews the latest progress of g-C3N4 based catalysts for CO2 reduction. The different synthetic methods of g-C3N4 are briefly discussed. Article mainly introduces methods of g-C3N4 shape control, element doping, and use of oxide compounds to modify g-C3N4. Modified g-C3N4 has more reactive sites, which can significantly reduce the probability of photogenerated electron hole recombination and improve the performance of photocatalytic CO2 reduction. Considering the literature, the hydrothermal method is widely used because of its simple equipment and process and easy control of reaction conditions. It is foreseeable that hydrothermal technology will continue to innovate and usher in a new period of development. Finally, the prospect of a future reduction of CO2 by g-C3N4-based catalysts is predicted.