• 제목/요약/키워드: functional chitosan

검색결과 122건 처리시간 0.032초

키토산 처리한 폴리에스테르 편평사 직물의 고기능화 가공에 관한 연구 (A Study on the High Functional Finishing of Polyester Flat Fabrics Treated with Chitosan)

  • 이석영;박성우;김삼수
    • 한국염색가공학회지
    • /
    • 제16권3호
    • /
    • pp.22-30
    • /
    • 2004
  • The polyester fabrics were treated with the chitosan with various solubility in optimized treatment condition. The treatment method was discussed to be a high functional finishing for the polyester fabric to obtain the high moisture absorption and anti-microorganism property by evaluating the effect of the chitosan purification method on the yield and anti-microorganism property of the chitosan. On the other hand, soluble polyurethane was added to the chitosan treatment solution and/or plasma pretreatment was done. The addition of soluble polyurethane give a high add-on ratio as well as a linen like effect of treated polyester fabric. The results were as follows: 1. In the treatment of polyester fabric by the chitosan solution, a soluble PU resin and low temperature plasma treatment were done to obtain high binding force between the fabrics and the chitosan. The add-on rate and the moisture absorption ratio of the fabrics treated with the chitosan-PU after treated with the plasma slightly increased more than those of the fabrics treated with the chitosan only. 2. Anti-static property of the fabrics treated with the chitosan decreased rapidly with increasing of the chitosan concentration. The washing fastness of the fabrics treated with the chitosan-PU after treated with the plasma was better than those of the fabrics treated with chitosan only. The wrinkle resistance of the treated fabrics decreased constantly with the concentration of the chitosan. The bending rigidity of the treated fabrics increased greatly. On the treatment of polyester fabric under optimum condition, the microorganism reduction rate kept above 90% after 10times launderings. 3. As the polyester fabrics which has flat yam was used as a weft yams were treated with the chitosan-PU as give a functional finishing effects such as durability, moisture absorption, anti-static and anti- microorganism property. Treated polyester fabric showed a good functional finishing effect and a linen like property.

나노키토산의 식품분야에서의 이용 (Application of nanochitosan in food industry: a review)

  • 유지영;고정아;박현진;김현우
    • 식품과학과 산업
    • /
    • 제53권1호
    • /
    • pp.56-68
    • /
    • 2020
  • Recently, chitosan has increased attention in commercial applications in the food industry in terms of its biocompatibility and nontoxicity. In particular, chitosan has been used as a good hosting material for producing nanoparticles due to its unique property of ionic gelation. Chitosan has disadvantages such as low solubility at physiological pH, causing the metabolism of core material in the intestine and gastric juice. To overcome these limitations, various chitosan derivatives such as carboxylated, thiolated, and acylated chitosan have been studied. This review focuses on the changes in the physicochemical properties of chitosan nanoparticles with the introduction of hydrophobic groups, the application of functional nanocapsules as coatings, and their applicability in the food sector. The physicochemical modification of chitosan is expected to be an attractive research field for the development of chitosan applications for food as well as for improving bioavailability in functional food.

키토산 섬유를 첨가한 종이의 물성 및 기능성의 변화에 관한 연구 (Study on the Change in Physical and Functional Properties of Paper by the Addition of Chitosan)

  • 박성철;강진하;임현아
    • 펄프종이기술
    • /
    • 제42권5호
    • /
    • pp.37-46
    • /
    • 2010
  • This study was carried out to develop new application field and obtain the basic data of mixed paper with wood pulp and chitosan fiber for producing functional paper. Two types of wood pulp, such as SwBKP and HwBKP, were mixed with chitosan fiber. Physical and optical properties, water vapor absorption, air permeability, antibacterial activity and ash were measured. And the surface morphology of manufactured paper was observed using SEM. The results are as follows. It was revealed that density, breaking length, burst index, tear index, folding endurance and brightness were reduced but water vapor absorption and air permeability were on the rise in the structural view of SwBKP according to increasing the chitosan fiber ratio. Those HwBKP added chitosan fiber were great not only in the strength but also water vapor absorption and air permeability except for brightness. The water vapor absorption was lower and the air permeability was higher in the HwBKP added various chitosan fiber ratios than those with no chitosan fiber. It is estimated that these properties were related with various mixed rate of chitosan fiber. Particularly, air permeability was strongly dependent on the mixed rate of chitosan fiber. The chitosan fiber has superior antibacterial property, comparing with wood fiber. Adding chitosan fiber to the wood pulp was found to have an excellent antibacterial activity, more than 90%. The ashes were determined within 0.5%. Special bonds between chitosan fiber and wood pulp was observed by SEM and it means that the chitosan fiber were combined equally in the interior of wood pulp. In conclusion, mixing wood pulp with chitosan fiber can not only improves the quality of paper but also extend the usage of paper as a functional paper by using inherent property of chitosan. After all, production of functional paper added chitosan fiber is expected for new valuable industry of paper.

Effect of Chitosan and Tannin Treatment on the Functional Manifestation of Coptidis Rhizoma Dyed Fabrics

  • Ryu, Soo Jin;Bae, Hyun Sook
    • 한국의류학회지
    • /
    • 제42권6호
    • /
    • pp.1016-1024
    • /
    • 2018
  • Lifestyle of Health and Sustainability (LOHAS) influences the development of hygienic and health-oriented functional textile products; consequently, there has been an increase in the prospects for environmentally friendly natural dyeing products with functional and sensitive characteristics. Therefore, the present study expresses a functional manifestation on fabrics by treatment with chitosan and tannin using natural Coptidis Rhizoma. Cotton and wool fabrics dyed with Coptidis Rhizoma after treatment with chitosan and tannin. Consequently, the antibiosis of fabric dyed with Coptidis Rhizoma was excellent with 99.9% bacterial reduction for Staphylococcus aureus and Klebsiella pneumoniae in both fabrics. The deodorization rate was more than 90.0% in both fabrics after 120 minutes. The UV-A protection rate was 88.2% and the UV-B protection rate was 87.7% for cotton. The UV-A protection rate was 88.2% and the UV-B protection rate was 84.3% for wool fabric. Therefore, both of the dyed fabrics showed excellent UV protection by treatment with only chitosan and tannin, without mordants. Therefore, chitosan and tannin treatments were able to manifest functionalities in the fabrics dyed with Coptidis Rhizoma.

Chitosan을 첨가한 혼합 소맥분이 식빵의 품질에 미치는 영향에 관한 연구 (A Study on the Effect of the Chitosan-added Wheat Flour on the Bread Quality)

  • 윤미숙;이정훈;김석영
    • 한국조리학회지
    • /
    • 제8권1호
    • /
    • pp.43-54
    • /
    • 2002
  • 식빵의 기능성 강화를 위하여 밀가루에 chitosan을 1, 3, 5% 첨가하여 반죽의 발효력, 빵의 부피 및 비용적, 관능검사에 의한 품질평가, 노화진행 등의 분석으로 제빵에 미치는 영향을 조사한 결과는 다음과 같다. 1. 반죽의 발효력은 chitosan 1%, 첨가시 가장 양호하였으며 chitosan 양이 증가할수록 발효는 지연되었다. 2. 빵의 부피는 chitosan 1% 첨가시 가장 양호하였으며 chitosan 양이 증가할수록 부피가 작았고, 비용적도 chitosan 1% 첨가시에 가장 높은 값을 타나냈다. 3. 노화 진행 정도는 chitosan 1% 첨가시 가장 느리게 진행되었다. 4. 관능검사에 의한 빵의 품질 평가는 chitosan 1% 첨가시 가장 높은 값을 나타냈다. 따라서 본 연구로 chitosan을 1%, 첨가시 제빵 적성이 양호하였을 뿐만 아니라 chitosan을 함유한 기능성 식빵 개발이 가능한 것을 보여주었다.

  • PDF

Inhibitory effect of chitosan oligosaccharides on the growth of tumor cells

  • Kim, Se-Kwon;Nam, Mi-Young;Nam, Kyung-Soo
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2000년도 춘계수산관련학회 공동학술대회발표요지집
    • /
    • pp.416-417
    • /
    • 2000
  • Chitin, a poly $\beta$-(1longrightarrow14)-N-acetyl-D-glucosamine, is best known as a cell wall component of fungi and as a skeletal materials of invertebrates. Chitosan is derived from chitin by deacetylation in the presence of alkali. Chitosan has been developed as new physiological materials since it possesses antibacterial activity, hypocholesterolemic activity and antihypertensive action. However, the actions of chitosan in vivo still remain ambiguous as the physiological functional properties because most animal intestines, especially the human gastrointestinal tract, do not possess enzyme such as chitosanase which directly degrade the $\beta$-glucosidic linkage in chitosan, and consequently the unbroken polymers may be poorly absorbed into the human intestine. Therefore, recent studies as chitosan have attracted interest for chitosan oligosaccharides, because the oligosaccharides process not only water-soluble property but also versatile functional properties such as antitumor activity, immune-enhancing effects, enhancement of protective effects against infection with some pathogens in mice and antimicrobial activity (Kingsnorth et al., 1983, Mori et al., 1997). (omitted)

  • PDF

키토산/은나노 혼합용액처리에 의한 환자복 소재의 기능성 향상 - 역학적 특성과 태 평가 - (Functional Improvement of the Clothing Material for Patients by Chitosan/Nanosilver Mixed Solution - The Assessment of Mechanical Properties and Hand Value -)

  • 정경미;강인숙;배현숙
    • 한국염색가공학회지
    • /
    • 제21권1호
    • /
    • pp.21-29
    • /
    • 2009
  • In order to enhance the functionality of a cotton fabric actually used as a clothing material for patients, the fabrics were treated with a chitosan/nanosilver mixed solution. The nanosilver had excellent biocompatibility, provided expectation of an additional performance, did not harm human beings, and supplements chitosan, which was disadvantaged if used alone for fabric treatment. The nanosilver was mixed thereto and a treatment effect due to a mixing ratio was considered. This study was observed through mechanical properties and hand value which were the important function. The treatment of chitosan/nanosilver mixed solution gave a smoother surface than the treatment of chitosan alone. As a result of evaluation of the forms according to KES-FB system, Koshi was deduced, and both Numeri and Fukurami were increased. Thereby, the cotton fabric was a little smooth to provide elasticity, due to the treatment of chitosan/nanosilver mixed solution. THV of the treated fabrics calculated from this basis increased at all mixing ratio as compared with the untreated fabric. The fabrics treated with chitosan/nanosilver mixed solution were shown a better THV than the fabric treated with chitosan alone.

텐셀 혼방 직물의 키토산 가공처리를 통한 감성기능 소재의 개발 (제1보) - 표면구조 분석 및 태 평가 - (Development of Susceptible Functional Fiber through Chitosan Finishing Treatment of Tencel Blended Fabrics (Part I) - Surface Structure Analysis and Hand Value Assessment -)

  • 박연희;배현숙
    • 한국의류학회지
    • /
    • 제29권7호
    • /
    • pp.987-996
    • /
    • 2005
  • For cationization, if chitosan, which has the affinity for a human body and reacts easily without inducing any pollution, is used, cationization of Tencel blended fabrics can be expected and further expansion of its use as a new susceptible material can be expected. Therefore, in this study, in order to compare a Tencel/cotton and a Tencel/Cotton/PET as Tencel blended fabrics with a Tencel single fabric, the fabric samples were used and processed with chitosan after NaOH pretreatment and enzyme treatment thereof, and then its adherent efficiency was enhanced by using a crosslinking agent, and then it was got to be finished with a softener. The fibril of Tencel fabric was controlled by enzyme treatment so that the surface of the Tencel blended fabrics got to be smooth. Chitosan adhered to the surface of the Tencel blended fabrics in the form of particles through its processing with chitosan. Chitosan treatment caused little change in the crystal structure thereof and the thermal stability of the Tencel/Cotton/PET fabric was slightly improved. The total hand value(THV) calculated on the basis of the change due to chitosan treatment was increased in all samples.

키토산을 이용한 기능성 소재 개발 1. 키토산 섬유와 S-카르복시메틸케라틴 코팅 키토산 섬유의 제조와 특성 (Development of Functional Textile Material by Using Chitosan 1. Preparation and Characterization of Chitosan Fiber and Chitosan Fiber Coated with S-carboxymethyl Keratein)

  • 민경혜;신윤숙
    • 한국염색가공학회지
    • /
    • 제11권3호
    • /
    • pp.32-40
    • /
    • 1999
  • Chitosan fiber was prepared by wet spinning with various draw ratio. Chitosan fiber was coated with f-carboxymethyl keratein(SCMK) by extruding chitosan solution into 1 M NaOH solution containing 1% SCMK. Among three chitosan used in this study(chitosans of 5 cps, 50 cps, 100 cps), 50 cps chitosan gave the best tenacity and optimum concentration was 5%. SCMK coating increased the tenacity of chitosan fiber. Regardless of SCMK coating, tenacity and elongation of both chitosan fibers were increased with the increase of draw ratio. Chitosan fiber showed antimicrobial activity against Staphyloccus aureus showing 66∼72% of bacteria reduction rates. On the other hand, chitosan fiber coated with SCMK didn't show any antimicrobial activity.

  • PDF

키토산을 함유하는 저식염 기능성 고추장의 제조 (Preparation of Low Salt and functional Kochujang Containing Chitosan)

  • 나상언;서규석;최정호;송근섭;최동성
    • 한국식품영양학회지
    • /
    • 제10권2호
    • /
    • pp.193-200
    • /
    • 1997
  • 키토산을 첨가한 저식염 기능성 고추장을 제조하여 숙성 기간별로 이화학적 성분 변화 및 미생물 변화를 조사하였다. 속성 기간 중 회분, 조지방, 조단백질은 젖산 및 키토산의 농도에 따라 별 차이를 보이지 않았으나 수분 함량은 전체적으로 증가하였고, 특히 6% 식염첨가구에서 가장 높은 4.23% 증가를 나타내었다. pH와 적정산도는 키토산 농도에 따라 유의성 있는 변화는 없었다. 알코올 농도는 숙성기간 중 계속 증가하여 4주째에는 0.35~2.19%까지 증가하였으나, 환원당은 숙성 2주까지 증가하여 26.1~27.3%에 이른 후 다시 감소하였고 키토산 농도가 높을수록 알코올 생성과 환원당 감소는 억제하는 것으로 나타났다. 키토산의 첨가가 $\alpha$-amylase의 활성은 약간 저해하였으나, $\beta$-amylase, 산성 protease, 중성 protease의 활성에는 큰 영향을 미치지 않았다. 산성 protease의 경우 9% 식염첨가구에 비하여 6% 식염첨가구 및 6% 식염+젖산, 키토산 첨가구의 효소 활성이 높게 나타났다. 아미노태 질소는 키토산 농도에 관계없이 6% 식염 첨가구들이 9% 식염첨가구에 비하여 전체적으로 높았으며, 암모니아태 질소는 키토산 농도가 높을수록 억제하는 것으로 나타났고, 특히 6% 식염 첨가구의 경우 숙성 4주째에는 170.2mg%까지 증가하였다. 세균수는 숙성 초기 급격히 감소한 후 1주 이후부터는 일정 수준을 유지하였고, 효모수는 숙성 2주까지 증가하다가 감소하는 경향이었다. 키토산 농도가 증가할수록 세균 및 효모의 수도 약간 감소하였다. 이상의 결과에서 키토산 첨가의 최적 농도는 0.25%이었다.

  • PDF