• 제목/요약/키워드: functional ceramics

검색결과 119건 처리시간 0.027초

분무건조된 세라믹 과립분말의 압축강도가 에어로졸 데포지션 공정에 미치는 효과 (The Effect of the Spray-Dried Ceramic Granules' Compressive Strength on the Aerosol Deposition method)

  • 김종우;류정호;한병동;최종진;윤운하;안철우;최준환;박동수
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.127-132
    • /
    • 2013
  • Recently, Aerosol Deposition method has attracted considerable attention because of its advantages to produce ceramic coatings on various substrates at room temperature. This method is strongly dependent on the raw powder, which should have high mobility with carrier gas and moderate mechanical strength to be crushed onto the substrate. In this report, the effects of the ceramic granules' compressive strength on the ceramic coating formation are discussed. The ceramic granules were prepared by spray-drying method and heat treated at various temperatures. It was found that at the moderate mechanical strength of ceramic granules gave more effective film formation behavior during Aerosol Deposition method.

Anode-supported Type SOFCs based on Novel Low Temperature Ceramic Coating Process

  • Choi, Jong-Jin;Ahn, Cheol-Woo;Kim, Jong-Woo;Ryu, Jungho;Hahn, Byung-Dong;Yoon, Woon-Ha;Park, Dong-Soo
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.338-343
    • /
    • 2015
  • To prevent an interfacial reaction between the anode and the electrolyte layer during the conventional high-temperature co-firing process, an anode-supported type cell with a thin-film electrolyte was fabricated by low-temperature ceramic thick film coating process. Ni-GDC cermet composite was used as the anode material and YSZ was used as the electrolyte material. Open circuit voltage and maximum power density were found to strongly depend on the surface uniformity of the anode functional layer. By optimizing the microstructure of the anode functional layer, the open circuit voltage and maximum powder density of the cell increased to 1.11 V and $1.35W/cm^2$, respectively, at $750^{\circ}C$. When a GDC barrier layer was applied between the YSZ electrolyte and the LSCF cathode, the cell showed good stability, with almost no degradation up to 100 h. Anode-supported type SOFCs with high performance and good stability were fabricated using a coating process.

상온 진공 분말 분사 공정을 이용한 다층 박막 소재의 제조 및 전기적 특성 (Fabrication and Characterization of Multi-layered Thick Films by Room Temperature Powder Spray in Vacuum Process)

  • 류정호;안철우;김종우;최종진;윤운하;한병동;최준환;박동수
    • 한국전기전자재료학회논문지
    • /
    • 제25권8호
    • /
    • pp.584-592
    • /
    • 2012
  • Room temperature powder spray in vacuum process, so called Aerosol deposition (AD) is a room temperature (RT) process to fabricate thick and dense ceramic films, based on collision of solid ceramic particles. This technique can provide crack-free dense thin and thick films with thicknesses ranging from sub micrometer to several hundred micrometers with very fast deposition rates at RT. In addition, this technique is using solid particles to form the ceramic films at RT, thus there is few limitation of the substrate and easy to control the compositions of the films. In this article, we review the progress made in synthesis of piezoelectric thin/thick films, multi-layer structures, NTC thermistor thin/thick films, oxide electrode thin films for actuators or sensor applications by AD at Korea Institute of Materials Science (KIMS) during the last 4 years.

3차원 나노구조화 기술을 이용한 고성능 기능성 세라믹 연구개발 동향 (Recent Advances in High-performance Functional Ceramics using 3D Nanostructuring Techniques)

  • 안창의;박준용;전석우
    • 세라미스트
    • /
    • 제22권3호
    • /
    • pp.230-242
    • /
    • 2019
  • Functional ceramics are widely utilized in a variety of application fields such as structural materials, sensors, energy devices, purification filter and etc due to their high strength, stability and chemical activity. With the breakthrough development of nanotechnology, many researchers have studied new types of nanomaterials including nanoparticle, nanorod, nanowire and nanoplate to realize high-performance ceramics. Especially several groups have focused on the 3D nanostructured ceramics because of their large surface area, efficient load transfer, ultra-fast ion diffusion and superior electrical (or thermal) conductivity. In this review, we introduce the reported fabrication strategies of the 3D nanostructured and functional ceramics, also summarized the 3D nanostructured ceramic based high-performance applications containing photocatalysts, structural materials, energy harvesting and storage devices.

Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications

  • Peddigari, Mahesh;Palneedi, Haribabu;Hwang, Geon-Tae;Ryu, Jungho
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.1-23
    • /
    • 2019
  • Dielectric materials with inherently high power densities and fast discharge rates are particularly suitable for pulsed power capacitors. The ongoing multifaceted efforts on developing these capacitors are focused on improving their energy density and storage efficiency, as well as ensuring their reliable operation over long periods, including under harsh environments. This review article summarizes the studies that have been conducted to date on the development of high-performance dielectric ceramics for employment in pulsed power capacitors. The energy storage characteristics of various lead-based and lead-free ceramics belonging to linear and nonlinear dielectrics are discussed. Various strategies such as mechanical confinement, self-confinement, core-shell structuring, glass incorporation, chemical modifications, and special sintering routes have been adopted to tailor the electrical properties and energy storage performances of dielectric ceramics. In addition, this review article highlights the challenges and opportunities associated with the development of pulsed power capacitors.

기공 형성제 조절과 소결 온도의 변화가 다공질 지르코니아 세라믹스의 미세구조 및 강도에 미치는 영향 (Effect of Pore Formers and Sintering Temperatures on Microstructure and Bending Strength of the Porous Zirconia Ceramics)

  • 이은정;송인혁;하장훈;한유동;김양도
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.502-509
    • /
    • 2011
  • In this study, a novel-processing route for fabricating microcellular zirconia ceramics has been developed. The proposed strategy for making the microcellula zirconia ceramics involved hollow microspheres as pore former. Compared to conventional dense microspheres pore former, well-defined pore structured zirconia ceramics were successfully fabricated. Effects of hollow microsphere content and sintering temperature on microstructure, porosity, pore distribution, and strength were investigated in the processing of microcellular zirconia ceramics.

고에너지 분쇄 매체 지르코니아 Beads의 미세구조 및 기계적 특성에 따른 마모율 분석 (Analysis of Attrition Rate of Y2O3 Stabilized Zirconia Beads with Different Microstructure and Mechanical Properties)

  • 김정환;윤세중;한병동;안철우;윤운하;최종진
    • 한국재료학회지
    • /
    • 제28권6호
    • /
    • pp.349-354
    • /
    • 2018
  • Particle size reduction is an important step in many technological operations. The process itself is defined as the mechanical breakdown of solids into smaller particles to increase the surface area and induce defects in solids, which are needed for subsequent operations such as chemical reactions. To fabricate nano-sized particles, several tens to hundreds of micron size ceramic beads, formed through high energy milling process, are required. To minimize the contamination effects during high-energy milling, the mechanical properties of zirconia beads are very important. Generally, the mechanical properties of $Y_2O_3$ stabilized tetragonal zirconia beads are closely related to the mechanism of phase change from tetragonal to monoclinic phase via external mechanical forces. Therefore, $Y_2O_3$ distribution in the sintered zirconia beads must also be closely related with the mechanical properties of the beads. In this work, commercially available $100{\mu}m-size$ beads are analyzed from the point of view of microstructure, composition homogeneity (especially for $Y_2O_3$), mechanical properties, and attrition rate.

에어로졸 증착법에 의해 티타늄 기판위에 제조된 다중벽 탄소나노튜브 강화 수산화아파타이트 코팅층 (Multi-walled Carbon Nanotube-Reinforced Hydroxyapatite Coating on Ti Substrates by Aerosol Deposition)

  • 한병동;박동수;류정호;최종진;윤운하;이병국;김현이
    • 한국세라믹학회지
    • /
    • 제45권10호
    • /
    • pp.610-617
    • /
    • 2008
  • Multi-walled carbon nanotube(CNT) reinforced hydroxyapatite composite coating with a thickness of $5{\mu}m$ has been successfully deposited on Ti substrate using aerosol deposition(AD). The coating had a dense microstructure with no cracks or pores, showing good adhesion with the Ti substrate. Microstructural observation using field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM) showed that CNTs with original tubular morphology were found in the hydroxyapatite-CNT(HA-CNT) composite coating. Measurements of hardness and elastic modulus for the coating were performed by nanoindentation tests, indicating that the mechanical properties of the coating were remarkably improved by the addition of CNT to HA coating. Therefore, HA-CNT composite coating produced by AD is expected to be potentially applied to the coating for high load bearing implants.

50μm급 이트리아 안정화 지르코니아 비드의 미세구조 및 마모 조건에 따른 마모율 분석 (Analysis of Attrition Rate of 50μm Size Y2O3 Stabilized Zirconia Beads with Different Microstructure and Test Conditions)

  • 김정환;윤세중;한병동;안철우;윤운하;최종진
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.233-240
    • /
    • 2019
  • This study analyzes the mechanical properties, including the attrition rate, of $50{\mu}m$ size yttria-stabilized zirconia (YSZ) beads with different microstructures and high-energy milling conditions. The yttria distribution in the grain and grain-boundary of the fully sintered beads relates closely to Vickers hardness and the attrition rate of the YSZ beads. Grain size, fractured surfaces, and yttrium distribution are analyzed by electronic microscopes. For standardization and a reliable comparison of the attrition rate of zirconia beads with different conditions, Zr content in milled ceramic powder is analyzed and calculated by X-ray Fluorescence Spectrometer(XRF) instead of directly measuring the weight change of milled YSZ beads. The beads with small grain sizes sintered at lower temperature exhibit a higher Vickers hardness and lower attrition rate. The attrition rate of $50{\mu}m$ YSZ beads is measured and compared with the various materials properties of ceramic powders used for high-energy milling. The attrition rate of beads appears to be closely related to the Vickers hardness of ceramic materials used for milling, and demonstrates more than a 10 times higher attrition rate with Alumina(Hv ~1650) powder than $BaTiO_3$ powder (Hv ~315).

Flexural Strength of Polysiloxane-Derived Strontium-Doped SiOC Ceramics

  • Eom, Jung-Hye;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제52권1호
    • /
    • pp.61-65
    • /
    • 2015
  • The effect of Sr addition on the flexural strength of bulk SiOC ceramics was investigated in polymer-derived SiOC ceramics prepared by conventional hot pressing. Crack-free, dense SiOC discs with a 30 mm diameter were successfully fabricated from commercially available polysiloxane with 1 mol% strontium isopropoxide derived Sr as an additive. Agglomerates formed after the pyrolysis of polysiloxane led to the formation of domain-like structures. The flexural strength of bulk SiOC was strongly dependent on the domain size formed and Sr addition. Both the minimization of the agglomerate size in the starting powders by milling after pyrolysis and the addition of Sr, which reinforces the SiOC structure, are efficient ways to improve the flexural strength of bulk SiOC ceramics. The typical flexural strength of bulk Sr-doped SiOC ceramics fabricated from submicron-sized SiOC powders was ~209 MPa.