• Title/Summary/Keyword: functional behavior simulation

Search Result 54, Processing Time 0.036 seconds

32 Bit RISC Core modeling using SystemC

  • 최홍미;박성모
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.325-328
    • /
    • 2002
  • In this paper, we present a SystemC model of a 32-Bit RISC core wi)ich is based on the ARMTTDMI architecture. The RISC core model was first modeled in C for architecture verification and then refined down to a level that allows concurrent behavior lot hardware timing using the SystcmC class library. It was driven in timed functional level that uses handshake protocol. It was compiled using standard C++ compiler. The functional simulation result was verified by comparing the contents of memory, the result of execution with the result from the ARMulator of ADS(Arm Developer Suite).

  • PDF

Computer Simulation for Die Filling Behavior of Semi-Solid Slurry of Mg Alloy

  • Lee, Dock-Young;Moon, Jung-Hwa;Seok, Hyun-Kwang;Kim, Sung-Bin;Kim, Ki-Bae
    • Journal of Korea Foundry Society
    • /
    • v.27 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In order to develop the semi-solid forming technology for magnesium alloy the rheological and thixotropic behavior of Mg alloy slurry with varying shear rates and cooling rates was investigated and simulated with considering the viscosity based on microstructures and processing variables. The viscosity of slurry of Mg alloy (AZ91D) in semi-solid region was exponentially increased with a solid fraction, and was decreased with increasing a shear rate. In order to analyze precisely the rheological behavior, the ANYCAST program modified with the Carreau model and the different heat transfer coefficient between the cast and mold was used to simulate the flow behavior of Mg semi-solid slurry during the injection into a casting mold in a high pressure diecasting machine. The simulated rheological behavior of Mg alloy slurry was matched well with the experimental results.

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

A study on behavioral analysis and efficient test algorithm for memory with resistive short and open defects (저항성 단락과 개방 결함을 갖는 메모리에 대한 동작분석과 효율적인 테스트 알고리즘에 관한 연구)

  • 김대익;배성환;이상태;이창기;전병실
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.70-79
    • /
    • 1996
  • To increase the functionality of the memories, previous studies have deifned faults models and proposed functional testing algorithms with low complexity. Although conventional testing depended strongly on functional (voltage) testing method, it couldn't detect short and open defects caused by gate oxide short and spot defect which can afect memory reliability. Therefore, IDDQ (quiescent power supply current) testing is required to detect defects and thus can obtain high reliability. In this paper, we consider resistive shorts on gate-source, gate-drain, and drain-source as well as opens in mOS FET and observe behavior of the memory by analyzing voltage at storge nodes of the memory and IDDQ resulting from PSPICE simulation. Finally, using this behavioral analysis, we propose a linear testing algorithm of complexity O(N) which can be applicable to both functional testing and IDDQ testing simultaneously to obtain high functionality and reliability.

  • PDF

Novel graphene-based optical MEMS accelerometer dependent on intensity modulation

  • Ahmadian, Mehdi;Jafari, Kian;Sharifi, Mohammad Javad
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.794-801
    • /
    • 2018
  • This paper proposes a novel graphene-based optical microelectromechanical systems MEMS accelerometer that is dependent on the intensity modulation and optical properties of graphene. The designed sensing system includes a multilayer graphene finger, a laser diode (LD) light source, a photodiode, and integrated optical waveguides. The proposed accelerometer provides several advantages, such as negligible cross-axis sensitivity, appropriate linearity behavior in the operation range, a relatively broad measurement range, and a significantly wider bandwidth when compared with other important contributions in the literature. Furthermore, the functional characteristics of the proposed device are designed analytically, and are then confirmed using numerical methods. Based on the simulation results, the functional characteristics are as follows: a mechanical sensitivity of 1,019 nm/g, an optical sensitivity of 145.7 %/g, a resonance frequency of 15,553 Hz, a bandwidth of 7 kHz, and a measurement range of ${\pm}10g$. Owing to the obtained functional characteristics, the proposed device is suitable for several applications in which high sensitivity and wide bandwidth are required simultaneously.

A data structure and algorithm for MOS logic-with-timing simulation (MOS 로직 및 타이밍 시뮬레이션을 위한 데이타구조 및 알고리즘)

  • 공진흥
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.206-219
    • /
    • 1996
  • This paper describes a data structure and evaluation algorithm to improve the perofmrances MOS logic-with-timing simulation in computation and accuracy. In order to efficiently simulate the logic and timing of driver-load networks, (1) a tree data structure to represent the mutual interconnection topology of switches and nodes in the driver-lod network, and (2) an algebraic modeling to efficiently deal with the new represetnation, (3) an evaluation algorithm to compute the linear resistive and capacitive behavior with the new modeling of driver-load networks are developed. The higher modeling presented here supports the structural and functional compatibility with the linear switch-level to simulate the logic-with-timing of digital MOS circuits at a mixed-level. This research attempts to integrate the new approach into the existing simulator RSIM, which yield a mixed-klevel logic-with-timing simulator MIXIM. The experimental results show that (1) MIXIM is a far superior to RSIM in computation speed and timing accuracy; and notably (2) th etiming simulation for driver-load netowrks produces the accuracy ranged within 17% with respect ot the analog simulator SPICE.

  • PDF

The Functional Extension of the Underwater Vehicle Modeling and Simulation Tactics Manager using the Script Embedding Method (스크립트 임베딩을 활용한 수중운동체 M&S 전술처리기의 기능 확장)

  • Son, Myeong-Jo;Kim, Tae-Wan;Nah, Young-In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.590-600
    • /
    • 2009
  • In the simulation of underwater vehicles such as a submarine or a torpedo, various type of simulations like an engineering level simulation for predicting the performance precisely and an engagement level simulation for examining the effectiveness of a certain tactic is required. For this reason, a tactics manager which can change the behavior of a simulation model according to external tactics is needed. In this study the tactics manager supporting a script language and engine which can represent various tactics and can help users define external input tactics for the tactic manager easily is suggested. Python and Lua which are representative among script languages have been compared and analyzed from the viewpoint of a tactic manage, and the tactic manger using the script engines of those script languages was implemented. To demonstrate the effectiveness of the tactic manager, a target motion analysis simulation of the warfare between a submarine and a surface ship.

Prediction of Mechanical Behavior for Carbon Black Added Natural Rubber Using Hyperelastic Constitutive Model

  • Kim, Beomkeun
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.308-316
    • /
    • 2016
  • The rubber materials are widely used in automobile industry due to their capability of a large amount of elastic deformation under a force. Current trend of design process requires prediction of functional properties of parts at early stage. The behavior of rubber material can be modeled using strain energy density function. In this study, five different strain energy density functions - Neo-Hookean model, Reduced Polynomial $2^{nd}$ model, Ogden $3^{rd}$ model, Arruda Boyce model and Van der Waals model - were used to estimate the behavior of carbon black added natural rubber under uniaxial load. Two kinds of tests - uniaxial tension test and biaxial tension test - were performed and used to correlate the coefficients of the strain energy density function. Numerical simulations were carried out using finite element analysis and compared with experimental results. Simulation revealed that Ogden $3^{rd}$ model predicted the behavior of carbon added natural rubber under uniaxial load regardless of experimental data selection for coefficient correlation. However, Reduced Polynomial $2^{nd}$, Ogden $3^{rd}$, and Van der Waals with uniaxial tension test and biaxial tension test data selected for coefficient correlation showed close estimation of behavior of biaxial tension test. Reduced Polynomial $2^{nd}$ model predicted the behavior of biaxial tension test most closely.

Equivalent Circuit Analysis of the Multi-functional Device for Mobile Telephones (휴대폰용 복합소자의 등가회로 해석)

  • 이영진;윤양기;임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.54-60
    • /
    • 2001
  • This paper investigates the equivalent circuit analysis method for the multi-functional device in mobile telephones, which works both as a buzzer and a vibrator in a single unit form. With a representative multi-functional device, we construct the corresponding equivalent circuits for the buzzer mode and the vibrator mode of the device, respectively, and analyze the performance of each of the modes. For proper construction of the circuit, we analyze the structure and operation mechanism of the device, and develop a computer simulation tool to simulate the behavior of the device. Validity of the analysis method is verified through comparison of the analysis results with experimental measurement results, which shows good agreement between the two sets of data.

  • PDF

Application of Model-Based Systems Engineering to Large-Scale Multi-Disciplinary Systems Development (모델기반 시스템공학을 응용한 대형복합기술 시스템 개발)

  • Park, Joong-Yong;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.689-696
    • /
    • 2001
  • Large-scale Multi-disciplinary Systems(LMS) such as transportation, aerospace, defense etc. are complex systems in which there are many subsystems, interfaces, functions and demanding performance requirements. Because many contractors participate in the development, it is necessary to apply methods of sharing common objectives and communicating design status effectively among all of the stakeholders. The processes and methods of systems engineering which includes system requirement analysis; functional analysis; architecting; system analysis; interface control; and system specification development provide a success-oriented disciplined approach to the project. This paper shows not only the methodology and the results of model-based systems engineering to Automated Guided Transit(AGT) system as one of LMS systems, but also propose the extension of the model-based tool to help manage a project by linking WBS (Work Breakdown Structure), work organization, and PBS (Product Breakdown Structure). In performing the model-based functional analysis, the focus was on the operation concept of an example rail system at the top-level and the propulsion/braking function, a key function of the modern automated rail system. The model-based behavior analysis approach that applies a discrete-event simulation method facilitates the system functional definition and the test and verification activities. The first application of computer-aided tool, RDD-100, in the railway industry demonstrates the capability to model product design knowledge and decisions concerning key issues such as the rationale for architecting the top-level system. The model-based product design knowledge will be essential in integrating the follow-on life-cycle phase activities. production through operation and support, over the life of the AGT system. Additionally, when a new generation train system is required, the reuse of the model-based database can increase the system design productivity and effectiveness significantly.

  • PDF