• Title/Summary/Keyword: function operator

Search Result 728, Processing Time 0.028 seconds

Sequential operator-valued function space integral as an $L({L_p},{L_p'})$ theory

  • Ryu, K.S.
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.375-391
    • /
    • 1994
  • In 1968k Cameron and Storvick introduced the analytic and the sequential operator-valued function space integral [2]. Since then, the theo교 of the analytic operator-valued function space integral has been investigated by many mathematicians - Cameron, Storvick, Johnson, Skoug, Lapidus, Chang and author etc. But there are not that many papers related to the theory of the sequential operator-valued function space integral. In this paper, we establish the existence of the sequential operator-valued function space integral as an operator from $L_p$ to $L_p'(1 and investigated the integral equation related to this integral.

  • PDF

AN OPERATOR VALUED FUNCTION SPACE INTEGRAL OF FUNCTIONALS INVOLVING DOUBLE INTEGRALS

  • Kim, Jin-Bong;Ryu, Kun-Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.293-303
    • /
    • 1997
  • The existence theorem for the operator valued function space integral has been studied, when the wave function was in $L_1(R)$ class and the potential energy function was represented as a double integra [4]. Johnson and Lapidus established the existence theorem for the operator valued function space integral, when the wave function was in $L_2(R)$ class and the potential energy function was represented as an integral involving a Borel measure [9]. In this paper, we establish the existence theorem for the operator valued function we establish the existence theorem for the operator valued function space integral as an operator from $L_1(R)$ to $L_\infty(R)$ for certain potential energy functions which involve double integrals with some Borel measures.

  • PDF

ANALYTIC OPERATOR-VALUED FUNCTION SPACE INTEGRAL REPRESENTED AS THE BOCHNER INTEGRAL:AN$L(L_2)$ THEORY

  • Chang, Kun-Soo;Park, Ki-Seong;Ryu, Kun-Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.599-606
    • /
    • 1994
  • In [1], Cameron and Storvick introduced the analytic operator-valued function space integral. Johnson and Lapidus proved that this integral can be expressed in terms of an integral of operator-valued functions [6]. In this paper, we find some operator-valued Bochner integrable functions and prove that the analytic operator-valued function space integral of a certain function is represented as the Bochner integral of operator-valued functions on some conditions.

  • PDF

ON VARIATIONS OF THE OPERATOR OF THE GREEN'S FUNCTIONS

  • Lee, Keon-Chang
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.493-498
    • /
    • 2004
  • In this paper, we try to construct the variation of the Green's function and investigate some operator properties of the Green's function. Also, we discuss the variation of the operator of the Green's function G(x, t) when the operator is varied.

STABILITY THEOREMS OF THE OPERATOR-VALUED FUNCTION SPACE INTEGRAL ON $C_0(B)$

  • Ryu, K.-S;Yoo, S.-C
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.791-802
    • /
    • 2000
  • In 1968, Cameron and Storvick introduce the definition and the theories of the operator-valued function space integral. Since then, the stability theorems of the integral was developed by Johnson, Skoug, Chang etc [1, 2, 4, 5]. Recently, the authors establish the existence theorem of the operator-valued function space [8]. In this paper, we will prove the stability theorems of the operator-valued function space integral over paths in abstract Wiener space $C_0(B)$.

  • PDF

A GENERALIZED SEQUENTIAL OPERATOR-VALUED FUNCTION SPACE INTEGRAL

  • Chang, Kun-Soo;Kim, Byoung-Soo;Park, Cheong-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.73-86
    • /
    • 2003
  • In this paper, we define a generalized sequential operator-valued function space integral by using a generalized Wiener measure. It is an extention of the sequential operator-valued function space integral introduced by Cameron and Storvick. We prove the existence of this integral for functionals which involve some product Borel measures.

SEVEN-PARAMETER MITTAG-LEFFLER OPERATOR WITH SECOND-ORDER DIFFERENTIAL SUBORDINATION RESULTS

  • Maryam K. Rasheed;Abdulrahman H. Majeed
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.903-917
    • /
    • 2023
  • This paper constructs a new linear operator associated with a seven parameters Mittag-Leffler function using the convolution technique. In addition, it investigates some significant second-order differential subordination properties with considerable sandwich results concerning that operator.

ON A CERTAIN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATOR

  • Nisar, Kottakkaran Sooppy;Rahman, Gauhar;Tomovski, Zivorad
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.507-522
    • /
    • 2019
  • The main aim of this present paper is to present a new extension of the fractional derivative operator by using the extension of beta function recently defined by Shadab et al. [19]. Moreover, we establish some results related to the newly defined modified fractional derivative operator such as Mellin transform and relations to extended hypergeometric and Appell's function via generating functions.

STUDY ON UNIFORMLY CONVEX AND UNIFORMLY STARLIKE MULTIVALENT FUNCTIONS ASSOCIATED WITH LIBERA INTEGRAL OPERATOR

  • Mayyadah Gh. Ahmed;Shamani Supramaniam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.81-93
    • /
    • 2023
  • By utilizing a certain Libera integral operator considered on analytic multivalent functions in the unit disk U. Using the hypergeometric function and the Libera integral operator, we included a new convolution operator that expands on some previously specified operators in U, which broadens the scope of certain previously specified operators. We introduced and investigated the properties of new subclasses of functions f (z) ∈ Ap using this operator.