• 제목/요약/키워드: function differential equation

검색결과 362건 처리시간 0.036초

A continuous solution of the heat equation based on a fuzzy system

  • Moon, Byung-Soo;Hwang, In-Koo;Kwon, Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.13-17
    • /
    • 2003
  • A continuous solution of the Dirichlet boundary value problem for the heat equation $u_t$$a2u_{xx}$ using a fuzzy system is described. We first apply the Crank-Nicolson method to obtain a discrete solution at the grid points for the heat equation. Then we find a continuous function to represent approximately the discrete values at the grid points in the form of a bicubic spline function (equation omitted) that can in turn be represented exactly by a fuzzy system. We show that the computed values at non-grid points using the bicubic spline function is much smaller than the ones obtained by linear interpolations of the values at the grid points. We also show that the fuzzy rule table in the fuzzy system representation of the bicubic spline function can be viewed as a gray scale image. Hence, the fuzzy rules provide a visual representation of the functions of two variables where the contours of different levels for the function are shown in different gray scale levels

AN EXTENSION OF THE BETA FUNCTION EXPRESSED AS A COMBINATION OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Marfaing, Olivier
    • 호남수학학술지
    • /
    • 제43권2호
    • /
    • pp.183-197
    • /
    • 2021
  • Recently several authors have extended the Beta function by using its integral representation. However, in many cases no expression of these extended functions in terms of classic special functions is known. In the present paper, we introduce a further extension by defining a family of functions Gr,s : ℝ*+ → ℂ, with r, s ∈ ℂ and ℜ(r) > 0. For given r, s, we prove that this function satisfies a second-order linear differential equation with rational coefficients. Solving this ODE, we express Gr,s as a combination of confluent hypergeometric functions. From this we deduce a new integral relation satisfied by Tricomi's function. We then investigate additional specific properties of Gr,1 which take the form of new non trivial integral relations involving exponential and error functions. We discuss the connection between Gr,1 and Stokes' first problem (or Rayleigh problem) in fluid mechanics which consists in determining the flow created by the movement of an infinitely long plate. For $r{\in}{\frac{1}{2}}{\mathbb{N}}^*$, we find additional relations between Gr,1 and Hermite polynomials. In view of these results, we believe the family of extended beta functions Gr,s will find further applications in two directions: (i) for improving our knowledge of confluent hypergeometric functions and Tricomi's function, (ii) and for engineering and physics problems.

Critical buckling load optimization of the axially graded layered uniform columns

  • Alkan, Veysel
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.725-740
    • /
    • 2015
  • This study presents critical buckling load optimization of the axially graded layered uniform columns. In the first place, characteristic equations for the critical buckling loads for all boundary conditions are obtained using the transfer matrix method. Then, for each case, square of this equation is taken as a fitness function together with constraints. Due to explicitly unavailable objective function for the critical buckling loads as a function of segment length and volume fraction of the materials, especially for the column structures with higher segment numbers, initially, prescribed value is assumed for it and then the design variables satisfying constraints are searched using Differential Evolution (DE) optimization method coupled with eigen-value routine. For constraint handling, Exterior Penalty Function formulation is adapted to the optimization cycle. Different boundary conditions are considered. The results reveal that maximum increments in the critical buckling loads are attained about 20% for cantilevered and pinned-pinned end conditions and 18% for clamped-clamped case. Finally, the strongest column structure configurations will be determined. The scientific and statistical results confirmed efficiency, reliability and robustness of the Differential Evolution optimization method and it can be used in the similar problems which especially include transcendental functions.

MULTI-ORDER FRACTIONAL OPERATOR IN A TIME-DIFFERENTIAL FORMAL WITH BALANCE FUNCTION

  • Harikrishnan, S.;Ibrahim, Rabha W.;Kanagarajan, K.
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.119-129
    • /
    • 2019
  • Balance function is one of the joint factors to determine fall in risk theory. It helps to moderate the progression and riskiness of falls for detecting balance and fall risk factors. Nevertheless, the objective measures for balance function require expensive equipment with the assessment of any expertise. We establish the existence and uniqueness of a multi-order fractional differential equations based on ${\psi}$-Hilfer operator on time scales with balance function. This class describes the dynamic of time scales derivative. Our tool is based on the Schauder fixed point theorem. Here, sufficient conditions for Ulam-stability are given.

다중 균열을 갖는 신장 보의 균열 에너지와 지배방정식 (Crack Energy and Governing Equation of an Extensible Beam with Multiple Cracks)

  • 손수덕
    • 한국공간구조학회논문집
    • /
    • 제24권1호
    • /
    • pp.65-72
    • /
    • 2024
  • This paper aims to advance our understanding of extensible beams with multiple cracks by presenting a crack energy and motion equation, and mathematically justifying the energy functions of axial and bending deformations caused by cracks. Utilizing an extended form of Hamilton's principle, we derive a normalized governing equation for the motion of the extensible beam, taking into account crack energy. To achieve a closed-form solution of the beam equation, we employ a simple approach that incorporates the crack's patching condition into the eigenvalue problem associated with the linear part of the governing equation. This methodology not only yields a valuable eigenmode function but also significantly enhances our understanding of the dynamics of cracked extensible beams. Furthermore, we derive a governing equation that is an ordinary differential equation concerning time, based on orthogonal eigenmodes. This research lays the foundation for further studies, including experimental validations, applications, and the study of damage estimation and detection in the presence of cracks.

THREE RESULTS ON TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

  • Li, Nan;Yang, Lianzhong
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.795-814
    • /
    • 2021
  • In this paper, we study the transcendental meromorphic solutions for the nonlinear differential equations: fn + P(f) = R(z)eα(z) and fn + P*(f) = p1(z)eα1(z) + p2(z)eα2(z) in the complex plane, where P(f) and P*(f) are differential polynomials in f of degree n - 1 with coefficients being small functions and rational functions respectively, R is a non-vanishing small function of f, α is a nonconstant entire function, p1, p2 are non-vanishing rational functions, and α1, α2 are nonconstant polynomials. Particularly, we consider the solutions of the second equation when p1, p2 are nonzero constants, and deg α1 = deg α2 = 1. Our results are improvements and complements of Liao ([9]), and Rong-Xu ([11]), etc., which partially answer a question proposed by Li ([7]).

ON THE EXISTENCE OF SOLUTIONS OF FERMAT-TYPE DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Chen, Jun-Fan;Lin, Shu-Qing
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.983-1002
    • /
    • 2021
  • We investigate the non-existence of finite order transcendental entire solutions of Fermat-type differential-difference equations [f(z)f'(z)]n + P2(z)fm(z + 𝜂) = Q(z) and [f(z)f'(z)]n + P(z)[∆𝜂f(z)]m = Q(z), where P(z) and Q(z) are non-zero polynomials, m and n are positive integers, and 𝜂 ∈ ℂ \ {0}. In addition, we discuss transcendental entire solutions of finite order of the following Fermat-type differential-difference equation P2(z) [f(k)(z)]2 + [αf(z + 𝜂) - 𝛽f(z)]2 = er(z), where $P(z){\not\equiv}0$ is a polynomial, r(z) is a non-constant polynomial, α ≠ 0 and 𝛽 are constants, k is a positive integer, and 𝜂 ∈ ℂ \ {0}. Our results generalize some previous results.

4계 타원형 미분 방정식을 위한 웨이블릿 급수해석 (The Wavelet Series Analysis for the Fourth-order Elliptic Differential Equation)

  • 조준형;우광성;신영식
    • 한국전산구조공학회논문집
    • /
    • 제24권4호
    • /
    • pp.355-364
    • /
    • 2011
  • 본 논문은 이미지 처리나 신호처리 및 정보압축 등에 사용되는 웨이블릿 급수를 이용하여 4계 타원형 미분방정식을 풀때 그 방법에 대하여 논의하고자 한다. 본 논문에서 사용한 Hat 웨이블릿 함수는 $H^1$-공간에 속한 급수로서 일반적으로 2계 타원형 미분방정식에 적용하기에는 무리가 없으나 4계 타원형 미분방정식에 적용하기에는 불충분한 미분가능회수를 가지고 있다. 따라서 이 문제를 극복하기 위해 모멘트와 처짐을 미지수로 하는 선형방정식을 순차적으로 구성하고 풀어내는 방법을 사용하였다. 모멘트와 처짐을 미지수로 하는 순차적 해석법은 탄성하중법(모멘트면적법)의 응용으로 생각할 수 있다. 또한 그 정식화과정에서 무요소법과 동일한 점과 차이점을 언급하였다. 예측한 바와 같이 Hat 웨이블릿 함수의 항을 많이 고려할수록 수치해석의 해가 향상되는 것을 확인할 수 있었다. 또한 응력특이를 갖는 오일러보 문제의 경우 제안된 해석법은 종래의 유한요소 해석값과도 비교되었다.

ON SOME SPECIAL DIFFERENCE EQUATIONS OF MALMQUIST TYPE

  • Zhang, Jie
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.51-61
    • /
    • 2018
  • In this article, we mainly use Nevanlinna theory to investigate some special difference equations of malmquist type such as $f^2+({\Delta}_cf)^2={\beta}^2$, $f^2+({\Delta}_cf)^2=R$, $f{^{\prime}^2}+({\Delta}_cf)^2=R$ and $f^2+(f(z+c))^2=R$, where ${\beta}$ is a nonzero small function of f and R is a nonzero rational function respectively. These discussions extend one related result due to C. C. Yang et al. in some sense