• Title/Summary/Keyword: fully invariant submodule

Search Result 6, Processing Time 0.024 seconds

On Generalized FI-extending Modules

  • Yucel, Canan Celep
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.45-51
    • /
    • 2020
  • A module M is called FI-extending if every fully invariant submodule of M is essential in a direct summand of M. In this work, we define a module M to be generalized FI-extending (GFI-extending) if for any fully invariant submodule N of M, there exists a direct summand D of M such that N ≤ D and that D/N is singular. The classes of FI-extending modules and singular modules are properly contained in the class of GFI-extending modules. We first develop basic properties of this newly defined class of modules in the general module setting. Then, the GFI-extending property is shown to carry over to matrix rings. Finally, we show that the class of GFI-extending modules is closed under direct sums but not under direct summands. However, it is proved that direct summands are GFI-extending under certain restrictions.

ASSOCIATED PRIME SUBMODULES OF A MULTIPLICATION MODULE

  • Lee, Sang Cheol;Song, Yeong Moo;Varmazyar, Rezvan
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.275-296
    • /
    • 2017
  • All rings considered here are commutative rings with identity and all modules considered here are unital left modules. A submodule N of an R-module M is said to be extended to M if $N=aM$ for some ideal a of R and it is said to be fully invariant if ${\varphi}(L){\subseteq}L$ for every ${\varphi}{\in}End(M)$. An R-module M is called a [resp., fully invariant] multiplication module if every [resp., fully invariant] submodule is extended to M. The class of fully invariant multiplication modules is bigger than the class of multiplication modules. We deal with prime submodules and associated prime submodules of fully invariant multiplication modules. In particular, when M is a nonzero faithful multiplication module over a Noetherian ring, we characterize the zero-divisors of M in terms of the associated prime submodules, and we show that the set Aps(M) of associated prime submodules of M determines the set $Zdv_M(M)$ of zero-dvisors of M and the support Supp(M) of M.

OPENLY SEMIPRIMITIVE PROJECTIVE MODULE

  • Bae, Soon-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.619-637
    • /
    • 2004
  • In this paper, a left module over an associative ring with identity is defined to be openly semiprimitive (strongly semiprimitive, respectively) by the zero intersection of all maximal open fully invariant submodules (all maximal open submodules which are fully invariant, respectively) of it. For any projective module, the openly semiprimitivity of the projective module is an equivalent condition of the semiprimitivity of endomorphism ring of the projective module and the strongly semiprimitivity of the projective module is an equivalent condition of the endomorphism ring of the projective module being a sub direct product of a set of subdivisions of division rings.

ON THE CHAIN CONDITIONS OF A FAITHFUL ENDO-FLAT MODULE

  • Bae, Soon-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • The faithful bi-module \ulcornerM\ulcorner with its endomorphism ring End\ulcorner(M) such that M\ulcorner is flat (in other words, End\ulcorner(M)-flat, or endo-flat)and with a commutative ring R containing an identity has been studied in this paper. The chain conditions of a faithful endo-flat module \ulcornerM relative to those of the endomorphism ring End\ulcorner(M) having the zero annihilator of each non-zero endomorphism are studied.

  • PDF

On Strongly Extending Modules

  • Atani, S. Ebrahimi;Khoramdel, M.;Hesari, S. Dolati Pish
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.237-247
    • /
    • 2014
  • The purpose of this paper is to introduce the concept of strongly extending modules which are particular subclass of the class of extending modules, and study some basic properties of this new class of modules. A module M is called strongly extending if each submodule of M is essential in a fully invariant direct summand of M. In this paper we examine the behavior of the class of strongly extending modules with respect to the preservation of this property in direct summands and direct sums and give some properties of these modules, for instance, strongly summand intersection property and weakly co-Hopfian property. Also such modules are characterized over commutative Dedekind domains.

ON A GENERALIZATION OF ⊕-SUPPLEMENTED MODULES

  • Turkmen, Burcu Nisanci;Davvaz, Bijan
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.531-538
    • /
    • 2019
  • We introduce FI-${\oplus}$-supplemented modules as a proper generalization of ${\oplus}$-supplemented modules. We prove that; (1) every finite direct sum of FI-${\oplus}$-supplemented R-modules is an FI-${\oplus}$-supplemented R-module for any ring R ; (2) if every left R-module is FI-${\oplus}$-supplemented over a semilocal ring R, then R is left perfect; (3) if M is a finitely generated torsion-free uniform R-module over a commutative integrally closed domain such that every direct summand of M is FI-${\oplus}$-supplemented, then M is a direct sum of cyclic modules.