• Title/Summary/Keyword: full-thickness

Search Result 939, Processing Time 0.029 seconds

Electrical and Optical Properties with the Thickness of Cu(lnGa)$Se_2$ Absorber Layer (Cu(InGa)$Se_2$ 광흡수막의 두께에 따른 태양전지의 전기광학 특성)

  • Kim, S.K.;Lee, J.C.;Kang, K.H.;Yoon, K.H.;Park, I.J.;Song, J.;Han, S.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.108-111
    • /
    • 2002
  • CIGS film has been fabricated on soda-lime glass, which is coated with Mo film. by multi-source evaporation process. The films has been prepared with thickness of 1.0 ${\mu}m$, 1.75${\mu}m$, 2.0${\mu}m$, 2.3${\mu}m$, and 3.0${\mu}m$. X-ray diffraction analysis with film thickness shows that CIGS films exhibit a strong (112) preferred orientation. Furthermore. CIGS films exhibited distinctly decreasing the full width of half-maximum and (112) preferred peak with film thickness. Also, The film's microstructure, such as the preferred orientation, the full width at half-maximum(FWHM), and the interplanar spacing were examined by X-ray diffraction. The preparation condition and the characteristics of the unit layers were as followings ; Mo back contact DC sputter, CIGS absorber layer : three-stage coevaporation, CdS buffer layer : chemical bath deposition, ZnO window layer : RF sputtering, $MgF_2$ antireflectance : E-gun evaporation

  • PDF

Design for Enhanced Precision in 300 mm Wafer Full-Field TTV Measurement (300 mm 웨이퍼의 전영역 TTV 측정 정밀도 향상을 위한 모듈 설계)

  • An-Mok Jeong;Hak-Jun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.88-93
    • /
    • 2023
  • As the demand for High Bandwidth Memory (HBM) increases and the handling capability of larger wafers expands, ensuring reliable Total Thickness Variation (TTV) measurement for stacked wafers becomes essential. This study presents the design of a measurement module capable of measuring TTV across the entire area of a 300mm wafer, along with estimating potential mechanical measurement errors. The module enables full-area measurement by utilizing a center chuck and lift pin for wafer support. Modal analysis verifies the structural stability of the module, confirming that both the driving and measuring parts were designed with stiffness exceeding 100 Hz. The mechanical measurement error of the designed module was estimated, resulting in a predicted measurement error of 1.34 nm when measuring the thickness of a bonding wafer with a thickness of 1,500 ㎛.

Comparison of Growth and Leaf Characteristics of Parasenecio firmus by Different Relative Light Intensity in Forest Farming (임간재배지에서 상대광도에 따른 병풍쌈의 생장 및 엽특성 비교)

  • Song, Ki Seon;Jeon, Kwon Seok;Yoon, Jun Hyuck;Kim, Chang Hwan;Park, Yong Bae;Kim, Jong Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.4
    • /
    • pp.295-300
    • /
    • 2014
  • This study was carried out to produce more Parasenecio firmus in forest farming. In order to achieve this purpose, it was surveyed the growth and photosynthetic characteristics of P. firmus. Relatively light intensity was controlled by 100%, 60%, 30% and 5% of full sunlight. Height was the highest under 5% of full sunlight. Shoot diameter was the highest in full sunlight. Fresh weight (leaf, stem, root and total) and dry weight (leaf, root and total) were the highest under 30% of full sunlight. S (leaf+stem)/R (root) ratio was the lowest under 30% of full sunlight and the highest under 5% of full sunlight. In leaf characteristics, leaf area, SLA and LAR were getting higher in the lower light level and the highest under 5% of full sunlight ($176.1cm^2$, $420.5cm^2{\cdot}g^{-1}$ and $123.5cm^2{\cdot}g^{-1}$). Especially, leaf area was surveyed higher under 30% of full sunlight in the next. Leaf thickness was getting lower in the lower light level and the lowest under 5% of full sunlight (overall 0.14~0.24 mm). As a result of surveying the whole experiment, P. firmus grows well under 30% and 5% of full sunlight in forest farming.

Labial and lingual/palatal bone thickness of maxillary and mandibular anteriors in human cadavers in Koreans

  • Han, Ji-Young;Jung, Gyu-Un
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.2
    • /
    • pp.60-66
    • /
    • 2011
  • Purpose: The aim of this study is to evaluate the buccal and lingual bone thickness in the anterior teeth and the relationship between bone thickness and the tissue biotype. Methods: Three male and two female human cadaver heads (mean age, 55.4 years) were used in this study. First, the biotype of periodontium was evaluated and categorized into a thick or a thin group. Next, full thickness reflections of the mandible and the maxilla to expose the underlying bone for accurate measurements in the anterior regions were performed. After the removal of the half of the alveolar bone, the probe with a stopper was used to measure the thickness of bone plate at the alveolar crest (AC), 3 mm apical to the alveolar crest (AC-3), 6 mm apical to the alveolar crest (AC-6), and 9 mm apical to the alveolar crest (AC-9). The thickness of the buccal plates at the alveolar crest were $0.97{\pm}0.18\;mm$,$0.78{\pm}0.21\;mm$, and $0.95{\pm}0.35\;mm$ in the maxillary central incisors, lateral incisors, and canines, respectively. The thickness of the labial plates at the alveolar crest were $0.86{\pm}0.59\;mm$, $0.88{\pm}0.70\;mm$, and $1.17{\pm}0.70\;mm$ in the mandibular central incisors, lateral incisors and canines, respectively. Conclusions: The thickness of the labial plate in the maxillary anteriors is very thin that great caution is needed for placing an implant. The present study showed the bone thickness of maxillary and mandibular anteriors at different positions. Therefore, these data can be useful for the understanding of the bone thickness of the anteriors and a successful implant placement.

Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect

  • Dehsaraji, Maryam Lori;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • In this paper, vibration analysis of functionally graded nanoshell is studied based on the sinusoidal higher-order shear and normal deformation theory to account thickness stretching effect. To account size-dependency, Eringen nonlocal elasticity theory is used. For more accurate modeling the problem and corresponding numerical results, sinusoidal higher-order shear and normal deformation theory including out of plane normal strain is employed in this paper. The radial displacement is decomposed into three terms to show variation along the thickness direction. Governing differential equations of motion are derived using Hamilton's principle. It is assumed that the cylindrical shell is made of an arbitrary composition of metal and ceramic in which the local material properties are measured based on power law distribution. To justify trueness and necessity of this work, a comprehensive comparison with some lower order and lower dimension works and also some 3D works is presented. After presentation of comparative study, full numerical results are presented in terms of significant parameters of the problem such as small scale parameter, length to radius ratio, thickness to radius ratio, and number of modes.

A Study on Improvement of Ice Model Test Procedure (빙수조 모형시험법 개선 연구)

  • Lee, Chun-Ju;Cho, Seong-Rak;Lau, Michael;Wang, Jung-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.562-568
    • /
    • 2008
  • In this study, the target FSICR class is 1A whose target thickness of the brash ice is 46 mm in model scale. Normally ice floes for brash ice do not exceed 2 m in full scale, so the model ice sheet was cut by about 10 cm by 10 cm using hand saws. Since the target thickness of brash ice is 46 mm, 46 mm ice sheet makes one layer brash ice. For 23 mm thickness ice sheet, two layers should be accumulated to reach 46mm brash ice thickness. For 15mm thickness ice sheet, three layers need to be accumulated as the same as those in 23 mm ice sheet. New methodology to produce a brash ice was proposed. The results showed that it would be important to use multi-layer rather than single layer possibly because of significant thrust deduction from the propeller-ice interaction in the present ice condition (FSICR 1A).

An Analysis of Ice Impact Force Characteristics for the Arctic Structure Shape (극지 구조물 형상에 대한 빙충격 하중 특성 분석)

  • Jeong, Seong-Yeob;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.469-477
    • /
    • 2012
  • This paper describes the characteristic analysis of ice impact force for the Arctic structure shape. In the present study an energy method has been used to predict the impact force during the ice-structure collision. This study also employs two concepts for reference contact area and normalized stress in analysis procedure. The influences of factors, such as impact velocity, full penetration depth, structure shape and ice floe size, are investigated. Full penetration occurs, particularly at lower impact velocity when ice thickness increase. But "typical size" ice floe does not expected ever to achieve full penetration during the impact procedure. The structure shape is the dominant factor in ice impact force characteristic. The results for various ice-structure collision scenarios are analyzed.