• 제목/요약/키워드: full-scale monitoring

검색결과 134건 처리시간 0.026초

고형화된 식생기반재를 활용한 여름철 옥상녹화의 실내 온·습도 조절효과 연구 (The Research on the Indoor Temperature and Humidity Control of Green Roof by Solid Growing Medium in Summer)

  • 이현정;염동우;이규인
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.93-99
    • /
    • 2015
  • Purpose: Various studies on the soil-based green roof systems have been conducted, and a lot of green roof systems were developed. A growing medium board is one of them which was developed for better application and maintenance, however the effect and performance of this material need to be verified. On this background, the purpose of this study is to prove cooling load reduction of green roof by monitoring experiment on the full-scale mock-ups. Method: To do this, Solid growing medium boards were installed on the mock-ups, and indoor temperature and humidity were monitored and analyzed. Result: As a results, the green roof with solid growing medium board were verified effective for controlling indoor temperature in summer.

혼합물 실험에서의 EVOP법 (EVOP in Experiments with Mixtures)

  • 임용빈;조호;김영일
    • 품질경영학회지
    • /
    • 제39권4호
    • /
    • pp.500-506
    • /
    • 2011
  • Evolutionary operation (EVOP) proposed by Box(1957) is a method for continuous monitoring and improvement of a full-scale manufacturing process with the objective of moving the current operating conditions toward the better ones. EVOP in experiments with mixtures consists of screening vital few components and making small changes in the current operating condition by making small increments in the proportion of the screened component. In this paper, how to determine operating conditions in EVOP in experiments with mixtures around the current operating condition is proposed. The proposed methods are illustrated with the simulated data based on the well known flare experimental data described by McLean and Anderson(1966).

풍력발전기용 복합재 블레이드의 구조 해석 및 인증시험 (Structural Analysis and Proof Test of Composite Rotor Blades for Wind Turbine)

  • 박선호;한경섭
    • 신재생에너지
    • /
    • 제4권3호
    • /
    • pp.45-50
    • /
    • 2008
  • GFRP based composite rotor blades were developed for 750 kW & 2 MW wind turbines. The blade sectional geometry was designed to have a general shell-spar and shear web structure. For verifying the structural safety under all relevant extreme loads specified in the GL guidelines, the structural analysis of the rotor blades was performed using commercial FEM codes. The static load carrying capacity, blade tip deflections and natural frequencies were evaluated to satisfy the strength and stability requirements. Full-scale proof tests of rotor blades were carried out with optical fiber sensors for real-time condition monitoring. Finally, the prototype of each rotor blade passed all proof tests for GL certification.

  • PDF

풍력발전기용 복합재 블레이드의 구조해석 및 인증시험 (Structural Analysis and Proof Test of Composite Rotor Blades for Wind Turbine)

  • 박선호;한경섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.299-302
    • /
    • 2008
  • GFRP based composite rotor blades were developed for 750kW & 2MW wind turbines. The blade sectional geometry was designed to have a general shell-spar and shear web structure. For verifying the structural safety under all relevant extreme loads specified in the GL guidelines, the structural analysis of the rotor blades was performed using commercial FEM codes. The static load carrying capacity, blade tip deflections and natural frequencies were evaluated to satisfy the strength and stability requirements. Full-scale proof tests of rotor blades were carried out with optical fiber sensors for real-time condition monitoring. Finally, the prototype of each rotor blade passed all proof tests for GL certification.

  • PDF

한국 서남 해상 풍력발전단지 통신망 연구 (Communication Network Architectures for Southwest Offshore Wind Farm)

  • 압델 하미드 모하메드;김영천
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.88-97
    • /
    • 2017
  • With the increasing of the penetration rate of large-scale wind farms, a reliable, highly available and cost-effective communication network is needed. As the failure of a WF communication network will significantly impact the control and real-time monitoring of wind turbines, network reliability should be considered into the WF design process. This paper analyzes the network reliability of different WF configurations for the Southwest Offshore project that is located in Korea. The WF consists of 20 WTs with a total capacity of 60 MW. In this paper, the performance is compared according to a variety of indices such as network unavailability, mean downtime and network cost. To increase the network reliability, partial protection and full protection were investigated as strategies that can overcome the impact of a single point of failure. Furthermore, the reliability performances of different network architectures are analyzed, evaluated and compared.

사출성형의 불량유형과 공정변수 간의 상관관계를 이용한 EVOP 절차 (An EVOP Procedure Using the Relationship Between Defect Types and Process Variables of Injection Molding)

  • 변재현;김용균
    • 산업공학
    • /
    • 제12권1호
    • /
    • pp.26-31
    • /
    • 1999
  • Evolutionary Operation(EVOP) is a method for continuously monitoring and improving a full-scale process to get an optimal operating condition while production is under way. To avoid appreciable changes in the product quality characteristics only small changes are made in the levels of the process variables. One of the reasons why EVOP is not so popular is that people in charge of the EVOP is blamed when the EVOP does not produce good results. We present an EVOP procedure when prior information of the relationship between defect types and process variables is known. The procedure is illustrated with an injection molding case study.

  • PDF

On the use of numerical models for validation of high frequency based damage detection methodologies

  • Aguirre, Diego A.;Montejo, Luis A.
    • Structural Monitoring and Maintenance
    • /
    • 제2권4호
    • /
    • pp.383-397
    • /
    • 2015
  • This article identifies and addresses current limitations on the use of numerical models for validation and/or calibration of damage detection methodologies that are based on the analysis of the high frequency response of the structure to identify the occurrence of abrupt anomalies. Distributed-plasticity non-linear fiber-based models in combination with experimental data from a full-scale reinforced concrete column test are used to point out current modeling techniques limitations. It was found that the numerical model was capable of reproducing the global and local response of the structure at a wide range of inelastic demands, including the occurrences of rebar ruptures. However, when abrupt sudden damage occurs, like rebar fracture, a high frequency pulse is detected in the accelerations recorded in the structure that the numerical model is incapable of reproducing. Since the occurrence of such pulse is fundamental on the detection of damage, it is proposed to add this effect to the simulated response before it is used for validation purposes.

Impact force localization for civil infrastructure using augmented Kalman Filter optimization

  • Saleem, Muhammad M.;Jo, Hongki
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.123-139
    • /
    • 2019
  • Impact forces induced by external object collisions can cause serious damages to civil engineering structures. While accurate and prompt identification of such impact forces is a critical task in structural health monitoring, it is not readily feasible for civil structures because the force measurement is extremely challenging and the force location is unpredictable for full-scale field structures. This study proposes a novel approach for identification of impact force including its location and time history using a small number of multi-metric observations. The method combines an augmented Kalman filter (AKF) and Genetic algorithm for accurate identification of impact force. The location of impact force is statistically determined in the way to minimize the AKF response estimate error at measured locations and then time history of the impact force is accurately constructed by optimizing the error co-variances of AKF using Genetic algorithm. The efficacy of proposed approach is numerically demonstrated using a truss and a plate model considering the presence of modelling error and measurement noises.

전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증 (Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels)

  • 김정주;류희환;송승우;도승철;이지윤;정호영
    • 한국터널지하공간학회 논문집
    • /
    • 제26권2호
    • /
    • pp.91-111
    • /
    • 2024
  • 전력구 터널은 송전선로 지중화 사업의 일환으로 대부분의 경우 쉴드 TBM을 활용하여 건설된다. TBM 챔버는 터널 내부 중 유일하게 암반과 흙을 마주하는 공간이며, 붕락과 부딪힘 사고 등 사고노출 빈도가 가장 높은 곳이다. 현재 챔버 외부에서 디스크커터 마모정도를 측정할 수 있는 방법이 부재하기 때문에 근로자의 수시점검이 필수적이다. 이에 본 연구에서는 TBM 챔버 내부 안전사고를 예방하고, 챔버 오픈회수 절감을 통해 공사기간 단축의 효과를 기대하기 위하여 디스크커터 마모측정 기술 개념을 정립하고, 시작품을 제작하였다. 선행기술을 고찰하여 자기센서가 굴착환경에서 가장 적합하다고 판단하여, 자기센서, 무선통신 모듈, 전원공급, 외부 케이싱, 그리고 모니터링 시스템을 종합한 마모측정 센서 패키지를 개발하였다. 실제 굴착환경에서 시작품 성능검증을 수행하기 위해 3.6 m 토압식 쉴드 TBM을 활용한 실대형 굴진시험을 수행하였다. 실대형 굴진시험 결과 8개의 시작품 중 5개가 정상적으로 작동하였다. 최대 3,000 kN의 추력과 1.5 RPM의 회전속도 안에서 센서측정값이 무선통신을 통해 시스템에 원활하게 표출되는지 확인하였고, 센서 케이싱이 파손되지 않아 내구성을 확보하는 것으로 분석되었다.

섬유기반 녹화시스템 적용에 따른 노후주택의 누진세기반 전력요금 저감효과에 대한 모니터링 연구 (A Study on Monitoring the Progressive Tax-based Power Charges Reduction Effects by Applying Fiber-based Artificial Vegetation System to Obsolete Houses)

  • 김태한;이소담
    • 한국환경복원기술학회지
    • /
    • 제20권6호
    • /
    • pp.67-77
    • /
    • 2017
  • Demands for housing has diversified recently due to low birth rate and the growth of aging population. Also, a share of idle houses and obsolete houses over 20 years old is gradually rising. Therefore, there is a need for a sustainable, environment-friendly improvement policy that is in line with a new housing paradigm and avoids full-scale new construction, such as a customized housing renovation plan considering local economic circumstances. Therefore, afforestation system applicable to buildings are assessed positively, but lack objective performance evaluation. Through one-year, long-term monitoring of replicated obsolete buildings that have poor insulation performance, this study calculated monthly average power consumption and analyzed power charges by applying pricing plans before and after the revision of progressive tax in order to examine economic effects expected by applying the afforestation system. In the obsolete buildings, the study showed that monthly average power consumption was reduced by 16.6kWh with 5.2% average reduction rate. Highest reduction was made in July at 11.3%. Aggregate monthly power consumption charges were relatively high in winter before and after the revision of progressive tax. Power charges reduction effect was highest in March when monthly power consumption was reduced to 300kWh level by applying the afforestation system.