풍력발전기용 복합재 블레이드의 구조해석 및 인증시험

*박 선호¹⁾, **한 경섭²⁾

Structural Analysis and Proof Test of Composite Rotor Blades for Wind Turbine

*Sunho Park, **Kyungseop Han

Key words : Composite wind turbine, Structural Analysis, FEM, Optical fiber, GFRP

Abstract : GFRP based composite rotor blades were developed for 750kW & 2MW wind turbines. The blade sectional geometry was designed to have a general shell-spar and shear web structure. For verifying the structural safety under all relevant extreme loads specified in the GL guidelines, the structural analysis of the rotor blades was performed using commercial FEM codes. The static load carrying capacity, blade tip deflections and natural frequencies were evaluated to satisfy the strength and stability requirements. Full-scale proof tests of rotor blades were carried out with optical fiber sensors for real-time condition monitoring. Finally, the prototype of each rotor blade passed all proof tests for GL certification.

1. 서 론

대형 풍력발전기용 블레이드는 경량화가 절실 히 요구되므로 복합재료가 구조재료로 주로 사용 되고 있다. 현재는 유리섬유 복합재를 사용한 블 레이드가 가장 일반적인 추세이다. 풍력 블레이 드의 구조는 초기에 항공기용 날개에 사용된 구 조를 차용하여 사용했으나, 현재는 표피(skin)-스파(spar)-웹(web) 구조가 가장 일반적이다.

풍력발전용 블레이드의 수명은 통상 20년 정 도이고 회전 중에는 원심력 및 바람의 항력 (drag)이 작용하므로 풍속에 따른 지속적인 정하 중이 작용하게 된다. 또한 블레이드는 굽힘성이 있으므로 풍속의 변화와 요잉(yawing) 등의 움직 임에 따라 진동이 발생하게 되고 이 진동은 블레 이드의 고유진동수에 따라 진폭이 감쇄되거나 증 폭되게 된다. 따라서 블레이드의 구조적 안정성 을 확인하기 위해서는 정하중 특성과 동특성을 고려한 구조 해석이 필요하다[1].

본 연구에서는 750kW 및 2MW급 유리섬유 복합 재 블레이드의 구조 해석을 위해, 상용유한요소 패키지(I-DEAS & ABAQUS)를 사용하여 극한 하중 에 대한 응력해석과 고유진동수해석을 수행하였 다. 아울러, 블레이드의 구조적 안정성을 증명하 기 위한 구조 인증시험을 시행하였으며, 이 때 광섬유 센서의 일종인 FBG(Fiber Bragg Grating) 센서를 삽입하여 구조시험 동안의 블레이드 상태 를 모니터링 하였다.

2. 블레이드

2.1 구조 및 재료

전형적인 풍력발전용 로터 블레이드의 기본 단면 구조는 Fig.1과 같이 표피(skin), 스파 (spar), 웹(web)으로 이루어져 있다. 표피는 전 체 공력형상을 유지하며 비틀림과 전단력을 받는 다. 표피는2축 또는 3축 유리 직조섬유(biaxial or triaxial glass fabric)와 코어재(core

¹⁾ 저자의 소속

E-mail : suno@postech.ac.kr Tel : (054)279-8216

²⁾ 저자2의 소속 E-mail : kshan@postech.ac.kr

Tel : (054)279-2163 Fax : (054)279-5209

material)로 이루어진 샌드위치 구조(sandwich structure)를 갖는다. 코어재는 가벼우면서도 좌 굴현상을 방지하도록 적용되었으며, PVC 또는 PUR 폼(foam), 발사나무(Balsa wood)가 사용되었 다. 스파는 대부분의 굽힘 하중을 받기 때문에 두꺼운 일 방향 유리 직조섬유(unidirectional glass fabric)를 사용하였으며, 전단력을 받는 웹은 2축 유리 직조섬유와 코어재로 이루어진 샌 드위치 구조를 갖는다. 허브와 블레이드를 연결 하는 루트(root) 부분은 가장 큰 응력이 가해지 는 부분으로 100~150mm의 적층 두께를 가진다. 750kW 블레이드는 프리프레그(prepreg) 적층 방 식으로, 2MW 블레이드는 RIM(resin injection molding) 공법으로 제작되었다.

Fig. 1 Cross-sectional view of a rotor blade

3. 구조 해석

3.1 유한요소 모델

유한요소 프로그램은 모델링에 I-DEAS, 해석 에 ABAQUS를 사용하였다. 유한요소 해석에 사용 된 물성은 Table 1와 같다. 블레이드에 두께 분 포를 주기 위해, 길이 방향으로 200개 이상의 S4 쉘 요소(shell element) 그룹으로 나눠지며, 코 드(chord)방향으로 6개의 요소 그룹으로 나눠진 다. 특히, 2MW 로터 블레이드는 타워(tower)와 블레이드 끝단(tip)과의 충분한 공간을 확보하기 위해 굽어진(pre-bended) 형상을 갖는다. Table 2은 각각의 블레이드 모델의 길이, 무게, 무게 중심을 나타낸다. 본 연구의 대상인 750kW 및 2MW 블레이드는 각각 클래스 III 및 II에 속하 며, 그에 해당되는 설계 하중 및 안전 계수를 기 반으로 해석되었다[2,3].

Table 1 Material properties for FE analysis

	UD	±45°	ЗАх
E ₁ (MPa)	41600	11,500	29,600
E ₂ (MPa)	7300	11,500	10,300
G ₁₂ (MPa)	4000	9700	6856
Poisson ratio	0.3	0.5	0.46
Specific weight (kg/m3)	1,880	1,880	1,880

Table 2	Total length,	total	mass and	center
	of gravity of	rotor	blades	

	750kW	2MW
Total length	27.75 m	42.65 m
Total mass	2,533 kg	7,940 kg
Center of gravity	8.93 m	14.57 m

3.2 고유진동수 해석

블레이드는 전단풍(wind shear), 타워의 영향 및 풍속의 변화 등에 따라 진동을 하게 되므로 공진을 피하도록 설계되어야 한다. 저속 회전체 인 로터 블레이드 해석에서 원심력에 의한 강성 변화는 무시한다. Table 3는 고유진동수 해석 결 과를 나타낸다. 30m가 넘는 블레이드는 GL 인증 규격에 따라 2차 고유진동수가 언급되어야 한다. 회전하는 블레이드에 대해서 가진 주파수 (excitation frequency)는 회전주기의 정수비의 형태로 발생한다[4]. Fig. 2는 750k₩ 블레이드의 회전수에 따른 고유진동수 변화를 캠벨 선도 (campbell diagram)로 표시한 것이다. 블레이드 가 3개이기 때문에 1P, 3P, 6P가 중요한 가진 주 파수이다. 공진을 방지하기 위해서는 블레이드의 고유진통수가 공칭회전수(nominal rpm)인 25rpm 에서 가진 주파수와 차이가 나야한다. 그림에서 보듯이 운용구간에서 공진가능성은 없는 것으로 확인되었다.

Table 3 Calculated natural frequency

	750kW	2MW
1 st flapwise	1.02 Hz	0.83 Hz
1 st chordwise	1.66 Hz	1.52 Hz
2 nd flapwise	3.14 Hz	2.51 Hz

3.3 정하중 해석

정하중 해석은 극한하중조건에서 각각의 블레 이드 구간에 적용되는 최대 굽힘 모멘트와 같아 지도록 총 4개의 구간에 코드 방향(chordwise)과 플랩 방향(flapwise)으로 하중을 적용하여 수행 하였다. 설계 하중에 대한 안전계수는 1.35이며, 재료에 대한 안전계수는 750kW의 경우 2.45, 2MW의 경우 2.2를 사용하였다[2]. Fig. 3는 플랩 방향으 로 최대 하중이 가해질 때, 2MW 로터 블레이드의 표피의 변형률 분포를 나타낸다. Table 4는 2MW 블레이드의 응력 및 변형률 해석 결과를 정리한 것이며, 허용치와 비교하면 극한하중조건하에서 도 블레이드가 안전함을 알 수 있다.

Fig. 3 2MW flapwise static analysis results

Table 4 Calculated stress and strain of 2MW rotor blade

	Stress	(MPa)	Strain (%)		
	Max. Min.		Max.	Min.	
Max. chordwise	8.34	-24.25	0.026	-0.079	
Min. chordwise	24.46	-7.93	0.080	-0.025	
Max. flapwise	146.8	-145.3	0.477	-0.474	
Min. chordwise	163.9	-165.8	0.535	-0.539	
Allowable	332	-205	0.84	-0.59	

4. 구조 인증시험

4.1 인증시험 준비

Fig. 4은 광섬유 상태 모니터링 시스템과 함께 750kW 로터 블레이드 구조 인증시험 준비가 완료 된 모습을 나타낸다. 크레인이 블레이드를 들어 올리면, 각 휘플 트리(whiffle tree)의 로드 셀 (load cell)이 하중을 측정하고, 줄자를 이용하 여 변형을 측정한다. 시험을 시작하기 전에 블레 이드와 지그(jig)의 자중에 의한 처짐을 보정해 준다. 750k₩ 블레이드의 경우, 2개의 FBG센서가 블레이드 내부에 삽입되어 졌으며, 이는 프리프 레그 적층 방식으로 제작될 경우 광섬유 삽입이 용이하기 때문이다. FBG센서는 센서 구간을 보호 하기 위해 아크릴레이트(acrylate)로 코팅되었 으며, 센서 측정구간 길이는 약 15mm, 지름은 약 250μm이다. FBG센서에서 반사된 스펙트럼은 FBG Interrogator, IS7000(fiberpro Inc.)을 사용하 여 측정된다[5~7].

Fig. 4 Test set-up of the 750kW rotor blade

4.2 고유진동수 시험

750kW 로터 블레이드의 각 구간에 부착된 가속 도계(accelerometer)와 FBG센서를 이용하여 블 레이드의 고유진동수를 측정하였다. FFT해석을 통한 측정결과와 유한요소 해석결과를 Table 5에 비교하였으며, 가속도계와 FBG센서를 통해 측정 된 결과는 비슷한 반면, 유한요소 해석결과는 다 소 차이가 있음을 알 수 있다. 이는 실제 제작된 블레이드와 블레이드 해석 모델의 차이에서 발생 한 것으로 사료되며, 유한요소 모델의 경우, 낙 뢰유도장치, 페인트, 기타 액세서리 등이 고려되 지 않았기 때문이다.

Table 5 Modal test results

	Accelerometer	FBG sensor	FEM	
1 st flapwise	1.05 Hz	1.07 Hz	1.02 Hz	
1 st chordwise	1.72 Hz	1.78 Hz	1.66 Hz	

4.3 정하중 시험

Fig. 5는 2MW 블레이드 정하중 구조시험 사진 을 나타낸다. 전체 시험 중 블레이드 파손이나, 좌굴 현상은 발생하지 않았다. 측정 및 해석 결 과는 Table 6에 정리하였다. 인증규격에 의하면, 변형의 경우 ±7%, 고유 진동수의 경우 ±5%, 변 형률의 경우 ±10%의 오차가 허용된다. Table 7 에 각 시험에 따른 오차를 정리하였다.

Fig. 5 2MW flapwise proof test

Table 6 Measurements and calculations

	Measurement / Calculation			
	Max.	Min.	Max.	Min.
	flap	flap	chord	chord
Tip deflection	6.712 /	8.306 /	1.360 /	1.252 /
(m)	7.274	8.692	1.129	1.012
Max. strain	0.397 /	0.464 /	0.231 /	0.201 /
(%)	0.439	0.511	0.229	0.157
Min. strain	-0.385 /	-0.449 /	-0.236 /	-0.205 /
(%)	-0.423	-0.496	-0.180	-0.200

Table 7 GL deviations and test errors

%	Natı frequ	ural Jency	Deflection		Strain	
	Flap	Chord	Flap	Chord	Flap	Chord
GL	÷	-5	£	£	出0	出0
Test	-0.4~ 2.4	-1.3	-4~ -6	20~ 24	-7~ -9	28~ 31

플랩 방향 시험(flapwise test)의 경우 해석 결과와 측정 결과는 허용 오차 내에서 만족스러 운 결과를 보였으나, 코드 방향 시험(chordwise test)은 20%이상의 오차를 보였다. 이는 코드 방 향 시험의 경우, 20W 블레이드의 굽어진 형상특 성(pre-bended) 및 시험방법상 각 단면의 전단중 심에 하중의 가하기 매우 어려워, 하중 적용 시 블레이드의 비틀림 변위가 발생하여 해석 결과보 다 측정 결과가 비교적 크게 측정된 것으로 사료 된다. 그러나 코드 방향 정하중 시험의 기본 목 적은 블레이드가 하중을 받았을 때 표피에 발생 하는 윙클(wrinkle)이나 좌굴(buckling)을 확인 하는 것으로서 플랩 방향 시험과 달리 하중과 변 위의 관계는 크게 중요시 되지 않았다.

Fig. 6는 750kW 블레이드의 코드 방향 시험에 서 FBG센서로부터 얻은 변형률 변화를 나타내며, FBG센서는 정확하게 모든 시험 과정을 모니터링 하였다.

Fig. 6 750kW chordwise proof test and strain changes from FBG sensors

5. 결 론

본 연구에서는 GL 인증규격에 따라 750kW 및 2MW급 풍력발전기용 블레이드의 구조해석을 수행 하였으며, 인증 구조시험을 통한 검증이 이루어 졌다. 또한, 광섬유 센서의 일종인 FBG센서를 블 레이드 내부에 삽입하여 전체 구조 인증시험 과 정을 모니터링 하는데 성공하였으며, 향후 회전 하는 로터 블레이드 실시간 모니터링에 적용 가 능함을 확인하였다.

후 기

본 연구는 산업자원부의 예산 지원으로 수행한 '저풍속형 고효율 풍력발전기 요소기술 개발 및 현장 실증' 및 '2MW PMSG형 풍력발전 시스템 개 발'사업의 일환이며, 에너지관리공단의 지원에 감사드립니다.

References

- [1] L. R. McKittric, et al., "Analysis of a Composite Blade Design for the AOC 15/50 Wind Turbine Using Finite Element Model", SAND2001-1441, 2001
- [2] Guideline for the Certification of Wind Turbines, Germanischer Lloyd, 2003
- [3] C. K. Jung, S. H. Park and K. S. Han, "Structural Design of a 750kW Composite Wind Turbine Blade", the Spring Conference of KSCM, pp18-21, 2004
- [4] D. A. Spera, "Wind Turbine Technology Fundamental Concepts of Wind Turbine Engineering", ASME Press, 1994
- [5] A. D. Kersey, et al., "Fiber grating sensors", Journal of Lightwave Technology, Vol. 15, No. 8, pp1442-1463, 1997
- [6] S. H. Park, J. C. Yun and K. S. Han, "Monitoring of rotor blade structural test using fiber Bragg grating sensors", the Autumn Conference of KWEA, pp139-142, 2007
- [7] K. Schroederl, et al., "A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade", Measurement Science and Technology, Vol. 17, pp1167 -1172, 2006