• Title/Summary/Keyword: full ships

Search Result 169, Processing Time 0.018 seconds

A study on the effect of flat plate friction resistance on speed performance prediction of full scale

  • Park, Dong-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.195-211
    • /
    • 2015
  • Flat plate friction lines have been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996), and the curve developed by Katsui et al. (2005). In the second part, change in the form factor by three kinds of friction resistance curves was investtigated based on model tests, and then the brake power and the revolution that were finally determined by expansion processes of full-scale ships. When three kinds of friction resistance curves were applied to each kind of ships, these were investigated: differences between resistance and self-propulsion components induced in the expansion processes of full-scale ships, correlation of effects between these components, and tendency of each kind of ships. Finally, what friction resistance curve was well consistent with results of test operation was examined per each kind of ships.

선수 플레어 충격압력 추정과 구조설계에의 응용 - 탱커와 산적화물선 - (Prediction of Bow Flare Impact Pressure and Its Application to Ship Structure Design - Tanker and Bulk Carrier -)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • 대한조선학회논문집
    • /
    • 제40권3호
    • /
    • pp.22-28
    • /
    • 2003
  • In rough seas, bow-flare regions of the full ships (tanker and bulk carrier) are subiect to high impact pressures due to the on-coming breaking waves. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, a new prediction method of the bow-flare impact pressure (in terms of equivalent static pressure) acting on the full ships' bow is presented. This method is based on the 6 full ships' damage analysis and the breaking wave impact mechanism. Calculation results of the bow-flare impact pressure and the shell plate thickness are shown and discussed. Through the example calculations, it was found that the present method is useful for the structure design of the full ships' bow.

MR Tanker 실선 프로펠러 캐비테이션 시험 및 LCT 모형시험과 비교연구 (Comparative Study of Full-Scale Propeller Cavitation Test and LCT Model Test for MR Tanker)

  • 안종우;백부근;설한신;박영하;김건도;김기섭;정보준;최성준
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.171-179
    • /
    • 2016
  • In order to study correlation of the propeller cavitation performance between a full-scale ship and a model ship for the MR Tanker, the full-scale ship and the model tests were conducted. The full-scale ship test is composed of cavitation observation, pressure fluctuation and noise measurements, which are conducted using 2 observation windows and 8 pressure transducers installed inside the full-scale ship above the propeller. The model test in the Large Cavitation Tunnel(LCT) was conducted at the same conditions as that of the full-scale ship and its results are compared with those of the full-scale ship. Through the model-ship correlation analysis, it is considered that the experimental technique for the MR Tanker class ship was verified in LCT.

선속이 선회권에 미치는 영향에 관한 연구 (The Effect of the Speed of a Ship on Her Turning Circle)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.209-214
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

  • PDF

선속이 선회권에 미치는 영향에 관한 연구 (The Effect of the Speed of a Ship on Her Turning Circle)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.210-210
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

대형캐비테이션터널(LCT) 실물 구동펌프 성능시운전 (Performance Trial-Test of the Full-Scale Driving Pump for the Large Cavitation Tunnel(LCT))

  • 안종우;김건도;김기섭;박영하
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.428-434
    • /
    • 2015
  • The objective of the present study is to analyze the results of the trial-test for the full-scale driving pump, which is arranged in the LCT (Large Cavitation Tunnel). Firstly, the reasons of selecting the final design pump are introduced in terms of the performance analysis in model tests. The trial-test items for the full-scale driving pump are measurements of output current/voltage at the inverter of the main motor and the flow velocity in the LCT test section. The test results show the increase in flow rate of about 10.7% and the decrease in pump head of about 26%, compared with those of final design-pump specification. The motor power has the margin of about 22%. The performance analysis for the full-scale pump is conducted using the commercial code (CFX-10). The delivered power calculated with CFX-10 shows good agreement with that extracted from the full-scale pump test. It is found that CFX-10 is useful to analyze a full-scale pump.

선형변수 및 모형시험결과 데이터베이스를 활용한 저속비대선의 잉여저항계수 추정 (Prediction of Residual Resistance Coefficient of Low-speed Full Ships using Hull Form Variables and Model Test Results)

  • 김유철;김명수;양경규;이영연;임근태;김진;황승현;김정중;김광수
    • 대한조선학회논문집
    • /
    • 제56권5호
    • /
    • pp.447-456
    • /
    • 2019
  • In the early stage of ship design, the rapid prediction of resistance of hull forms is required. Although there are more accurate prediction methods such as model test and CFD analysis, statistical methods are still widely used because of their cost-effectiveness and quickness in producing the results. This study suggests the prediction formula for the residual resistance coefficient (Cr) of the low-speed full ships. The formula was derived from the statistical analysis of model test results in KRISO database. In order to improve prediction accuracy, the local variables of hull forms are defined and used for the regression process. The regression formula for these variables using only principal dimensions of hull forms are also provided.

선형변수 기계학습 기법을 활용한 저속비대선의 잉여저항계수 추정 (Prediction of Residual Resistance Coefficient of Low-Speed Full Ships Using Hull Form Variables and Machine Learning Approaches)

  • 김유철;양경규;김명수;이영연;김광수
    • 대한조선학회논문집
    • /
    • 제57권6호
    • /
    • pp.312-321
    • /
    • 2020
  • In this study, machine learning techniques were applied to predict the residual resistance coefficient (Cr) of low-speed full ships. The used machine learning methods are Ridge regression, support vector regression, random forest, neural network and their ensemble model. 19 hull form variables were used as input variables for machine learning methods. The hull form variables and Cr data obtained from 139 hull forms of KRISO database were used in analysis. 80 % of the total data were used as training models and the rest as validation. Some non-linear models showed the overfitted results and the ensemble model showed better results than others.

통계적 접근 방법을 이용한 저속비대선 및 컨테이너선의 동력 성능 추정 (Powering Performance Prediction of Low-Speed Full Ships and Container Carriers Using Statistical Approach)

  • 김유철;김건도;김명수;황승현;김광수;연성모;이영연
    • 대한조선학회논문집
    • /
    • 제58권4호
    • /
    • pp.234-242
    • /
    • 2021
  • In this study, we introduce the prediction of brake power for low-speed full ships and container carriers using the linear regression and a machine learning approach. The residual resistance coefficient, wake fraction coefficient, and thrust deduction factor are predicted by regression models using the main dimensions of ship and propeller. The brake power of a ship can be calculated by these coefficients according to the 1978 ITTC performance prediction method. The mean absolute error of the predicted power was under 7%. As a result of several validation cases, it was confirmed that the machine learning model showed slightly better results than linear regression.

척형선박과 비대형선박의 침로안전성의 비교에 관한 연구 (A Study on the Comparison of course Stabilities between Fine-form Ships and Full-form Ships)

  • 황해성;이동섭;윤점동
    • 한국항해학회지
    • /
    • 제16권3호
    • /
    • pp.33-41
    • /
    • 1992
  • Handling performance of a vessel is greatly related with her steering characteristics which consist of two kinds of motion characteristics ; namely course stability and turning ability. The correct prediction of the qualities, especially the steering characteristics is as much important in ship handling as in ship design. It is the purpose of this paper to provide ships handlers better understanding of steering characteristics and then to help them in safe controlling and maneuvering of vessels presenting distinct inherent steering characteristic difference that lies between a fine-form vessel and full-form vessel. The authors calculated dynamic course stabilities of two kinds of ideal models, one of which represents a fine-form ship and the other a full-form ship, based on hydrodynamic data of forces and moments obtained by model tests in maneuvering tanks. The result of calculations indicated that a ship of full-form configuration has inhernet course instability. Though significant nonlinearties affect ship montions in maneuvers, application of linear theory is sufficient for prediction of the maneuvering characteristics of vessels on calm waters for handling reference.

  • PDF