• Title/Summary/Keyword: fuel utilization

Search Result 443, Processing Time 0.034 seconds

Stress Analysis of IPS Lower bracket

  • Lee, J.M.;Park, K.N.;Chi, D.Y.;Park, S.K.;Sim, B.S.;Lee, H.H.;Ahn, S.H.;Lee, C.Y.;Kim, H.R.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.10a
    • /
    • pp.703-704
    • /
    • 2005
  • PDF

Study on Internal Reforming Characteristic of 1 kW Solid Oxide Fuel Cell Stack (1 kW 고체산화물 연료전지 스택의 내부개질 특성 연구)

  • CHOI, YOUNGJAE;AHN, JINSOO;LEE, INSUNG;BAE, HONGYOUL;MOON, JIWOONG;LEE, JONGGYU
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.377-383
    • /
    • 2017
  • This paper presents the performance characteristics of a 1 kW solid oxide fuel cell (SOFC) stack under various internal reforming and fuel utilization conditions. The Research Institute of Industrial Science & Technology (RIST) developed the 9-cell stack using a $20{\times}20cm^2$ anode supported planar cell with an active area of $324cm^2$. In this work, current-voltage characteristic test, fuel utilization test, continuous operation, and internal reforming test were carried out sequentially for 765 hours at a furnace temperature of $700^{\circ}C$. The influence of fuel utilization and internal reforming on the stack performance was analyzed. When the 1 kW stack was tested at a current of 145.8 A with a corresponding fuel utilization of 50-70% (internal reforming of 50%) and air utilization of 27%, the stack power was approximately 1.062-1.079 kW. Under continuous operation conditions, performance degradation rate was 2.16%/kh for 664 hours. The internal reforming characteristics of the stack were measured at a current of 145.8. A with a corresponding fuel utilization of 60-75%(internal reforming of 50-80%) and air utilization of 27%. As fuel utilization and internal reforming ratio increased, the stack power was decreased. The stack power change due to the internal reforming ratio difference was decreased with increasing fuel utilization.

Cathodic Recirculation System Using a Dual-ejector to Improve Oxygen Utilization of a Submarine Fuel Cell

  • Kim, Min-Jin;Sohn, Young-Jun;Lee, Won-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.193-197
    • /
    • 2010
  • In terms of the system efficiency, it is very useful to apply the ejector into the fuel recirculation system of a fuel cell system since the ejector needs no parasitic power to operate. Since the conventional automotive fuel cell use hydrogen and air as their fuel, the only hydrogen is needed to be recirculated for the better fuel efficiency. On the other hand, the submarine fuel cell needs both hydrogen and oxygen recirculation systems because the submarine drives under the sea. In particular, the cathodic recirculation has to meet the tougher target since the oxygen based pressurized stack generally used in the submarine applications generates the significant amount of the water in the stack during the operation. Namely, the oxygen utilization has designed less than 50% in the whole operating range for the better exhausting of the generated waters. And thereby in terms of the oxygen utilization, the entrainment ratio of the ejector should be more than 1 within the whole operating range. However, the conventional ejector using a constant nozzle can not afford to satisfy the mentioned critical requirement. To overcome the problem, the dual-ejector and its control strategy are designed. The performance of the proposed dual-ejector is verified by the experiments based on the real operating conditions of the target submarine system. Furthermore, the proposed design method can be used for the other fuel recirculation system of a large-scale fuel cell system with the critical requirement of the fuel utilization.

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

A Control Method of Bidirectional DC-DC Converter for Fuel Utilization and Durability Improvement in Fuel Cell Vehicles (연료전지자동차에서 연료이용률과 연료전지 내구성 향상을 위한 양방향 DC-DC 컨버터의 제어기법)

  • Jo, Jin-Sang;Jung, Sang-Min;Lee, Jin-Hee;Han, Soo-Bin;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.428-435
    • /
    • 2005
  • In this paper a power controller is proposed to accurately control the commanded power for charge and discharge operation of a bidirectional DC-DC converter so that durability is improved in hybrid systems such as fuel cell vehicles. Also, a control algorithm for charge and discharge operation is proposed to improve fuel utilization and keep battery SOC constant so that energy is effectively utilized.

An Experimental Study on Drilling Conditions for the Instrumentation of Nuclear Fuel (핵연료 계장을 위한 천공조건에 대한 실험적 연구)

  • Hong, Jintae;Kim, Ka-Hye;Jeong, Hwang-Young;Ahn, Sung-Ho;Joung, Chang-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.113-119
    • /
    • 2013
  • To develop a new nuclear fuel, it needs to make a test fuel rod and carry out burn-up test in the test loop of a research reactor to check the irradiation characteristics of the nuclear fuel. At that time, several sensors such as thermocouples, LVDTs and SPNDs are needed to be attached in and out of the fuel rod and connect them with instrumentation cables. Then, the instrumentation cables deliver the signals measured by the sensors to the measuring device located outside of the reactor pool. In particular, to install a thermocouple in a fuel rod, it needs to drill off holes on the alumina blocks and sintered $UO_2$ pellets. However, because the hardness of a sintered $UO_2$ pellet is 700 Hv (or HRC 61) and that of an alumina block is 1480 Hv, a special drilling machine which adapts a diamond coated drill bit had developed. In this study, several case experiments have been carried out to find an optimal drilling condition of the drilling machine. And, using the optimal drilling condition, minimum numbers of the holes that a drill bit can drill off are verified.