• 제목/요약/키워드: fuel temperature

검색결과 4,027건 처리시간 0.032초

Insights into fuel behaviour during relatively fast thermal transients based on calculations for two tests of the Halden IFA-507 experiment

  • Grigori Khvostov
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3801-3807
    • /
    • 2023
  • Outcomes of the project "Comprehensive Verification of the FALCON Code for Calculation of Nuclear Fuel Temperature" relating to calculation of fuel temperature during relatively fast thermal transients are presented. Good prediction capabilities of the FALCON MOD01 code coupled with the GRSW-A code are shown as applied to the data of the TF3 and TF5 tests from the Transient Temperature Experiment IFA-507. The IFA-507 related dataset of the OECD/NEA International Fuel Performance Experiments (IFPE) Database is extended by the reconstructed dynamics of the axial power distribution in the rods during the transient phase of the experiment. Based on the code calculation, the time constant of the thermal fuel response to a power transient is estimated.

중형 디젤을 기초한 LPG엔진에서 배기가스온도 저감 연구 (A Study on Reduction of Exhaust Gas Temperature in Retrofitted LPG Fueled Engine Based Medium-Duty Diesel Engine)

  • 최경호;조웅래
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.63-68
    • /
    • 2003
  • The purpose of this study was to investigate reduction of exhaust gas temperature in LPG conversion engine from diesel. A conventional diesel engine was modified to a LPG(Liquified Petroleum Gas) engine that diesel fuel injection pump was replaced by the LPG fuel system. The research was peformed with measurement of exhaust gas temperature by varying spark ignition timing, air-fuel ratio, compression ratio, EGR ratio and different compositions of butane and propane. The major conclusion of this work were followed. (i) Exhaust gas temperature was decreased and power was increased with the advanced spark ignition timing. (ii) Exhaust gas temperature was decreased with lean and rich air-fuel ratio. (iii)Exhaust gas temperature was decreased and power was increased with the higher compression ratio. (iv) Engine power and exhaust temperature were not influenced by varied butane/propane fuel compositions. (v) Finally, one of the important parameters in reduction of exhaust gas temperature is spark ignition timing among the parameters in this study.

최적 핵연료 접촉 열전도도 모델 개발을 위한 예비 연구 (Preliminary Study for the Development of Optimum Fuel Contact Conductance Model)

  • 양용식;신창환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2488-2493
    • /
    • 2007
  • A gap conductance is very important factor which can affect nuclear fuel temperature. Especially, in case of an annular fuel, a gap conductance effect can lead an unexpected heat split phenomena which is caused by a large difference of an inner and outer gap conductance. The gap conductance mechanism is very complicated behavior due to the its strong dependency on microscopic factors such as a contact surface roughness, local contact pressure and local temperature. In this paper, for the decision of test temperature and pressure range, a procedure and calculation results of in-reactor fuel temperature and pressure analysis are summarized which can be applied to test equipment design and determination of test matrix. Based upon analysis results, it is concluded that the minimum and maximum test temperature are $300^{\circ}C$ and $530^{\circ}C$ respectively, and the maximum pellet/cladding interfacial contact pressure should be observed up to 45MPa.

  • PDF

LPG 가스분사 방식 연료공급시스템의 관로 유동해석에 관한 연구 (A Study on the Fluid Network Analysis for the LPG Supply System of the Gaseous Fuel Injection Type)

  • 윤정의;김명환;남현식;정태형
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.35-40
    • /
    • 2007
  • The gaseous fuel injection (GFI) type in LPG fuel supply system has more advantage than the liquified fuel injection type from the viewpoint of durability and cost reduction. But in GFI system, to control pressure and temperature of gaseous fuel is needed to get precision fuel metering for the compressible characteristic of gaseous fuel. In this study, the effects of pressure and temperature on the fuel metering was simulated by commercial flow network analysis package, Flowmaster. And the fuel composition effects on the fuel metering were also studied to figure out the fuel metering characteristics.

경유혼입 디젤엔진오일의 점도특성에 관한 실험적 연구 (Experimental Study on the Viscosity Characteristics of Diluted Engine Oils with Diesel Fuel)

  • 김청균;김한구
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2008
  • An experimental study was conducted to evaluate the viscosity characteristics of multi-grade engine oils in which contain diesel fuels. Unused engine oils of SAE 5W40, 10W40 and 15W40 were blended with a diesel fuel ratio of 5%, 10%, and 15%. The viscosity of a diluted engine oil was measured with temperature variation ranging from $-20^{\circ}C$ to $120^{\circ}C$ using a rotary viscometer. The diluted engine oil in which is blended to a diesel fuel plays an important role for decreasing an engine oil viscosity, which may decrease the oil film thickness and a load-carrying capacity. Test results show that the viscosity tends to fall for the increased temperature when engine oil is mixed with a diesel fuel. Especially, the viscosity at a low temperature zone is radically decreased compared with a high temperature zone. Based on the experimental results, the empirical equation that can predict the viscosity of diluted engine oil is expressed in the exponential function with the variation of the temperature and a fuel ratio of diluted engine oil. This equation may be possible to predict the limitation of the oil-fuel dilution rate at the concept design stage of the CDPF system, which doesn't affect the influence of the tribological components.

계절적, 지역적 온도 변화에 따른 석유류 체적의 변화 (Volume Variation of Liquid Fuel by Seasonal, Regional Temperature Changes)

  • 임기원
    • 대한기계학회논문집B
    • /
    • 제38권2호
    • /
    • pp.155-163
    • /
    • 2014
  • 주유소에서 거래되는 액체 연료인 석유류는 온도 변화에 따라 팽창과 수축하게 된다. 석유류의 체적팽창계수는 약 $0.1%/^{\circ}C$이고, 우리나라의 기온은 겨울철에는 $-15^{\circ}C$, 여름철에는 $35^{\circ}C$까지 변한다. 온도 변화에 따른 체적의 변화가 석유류 거래에 미치는 영향을 조사하기 위해 주유소에 저장된 연료와 주유되는 연료의 온도 변화를 측정하였다. 또 우리나라의 지난 50 년간의 일간, 월간, 년간 온도 변화를 고찰하였다. 지하 저장탱크의 유류 온도는 계절에 관계없이 하루 중 안정되게 유지되었다. 주유소 주위의 환경 조건과 위치, 주유 빈도등이 주유되는 유류의 온도에 영향을 미치는 것을 알 수 있었다. 이러한 연구 결과는 건전한 석유류의 거래와 관련 법령의 제정에 활용될 것이다.

2 kW급 개방 캐소드형 연료전지 출력 향상을 위한 온습도 제어 (Performance Increase for a 2 kW Open Cathode Type Fuel Cell Using Temperature/Humidity Control)

  • 원위위;최미화;양석란;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.369-376
    • /
    • 2017
  • Temperature and humidity regulations of an open-cathode PEM fuel cell with balance of plant (BOP) are developed in this study. The axial fan, a bubble humidifier, set of solenoid valves and a controller are used to perform temperature and humidity control simultaneously. A fuzzy controller is designed, and it shows its superiority in real-time controlling for strong non-linear dynamical fuel cell system. The axial fan speed is used for temperature control and solenoid valve on/off signal of the bubble humidifier is used for humidity control. The axial fan speed is controlled to keep the fuel cell temperature within the desired point. Meanwhile, the bubble humidifier is utilized to moisture hydrogen to manage the water content of membrane. The results show that the proposed fuzzy controller effectively increases the output power of 10% for a PEM fuel cell.

가솔린 엔진에서 연료 분사량 및 오일 온도에 따른 피스톤 마찰손실 특성 연구 (Study on the Characteristics of Piston Friction Losses for Fuel Injected Mass and Oil Temperature in a Gasoline Engine)

  • 강종대;조진우;박성욱
    • 한국분무공학회지
    • /
    • 제27권3호
    • /
    • pp.161-166
    • /
    • 2022
  • To measure the change in friction loss due to the control of fuel mass and oil temperature in a gasoline engine, the floating liner method was used to measure the friction generated by the piston of a single-cylinder engine. First, to check the effect of combustion pressure on friction, the friction loss was measured by adjusting the fuel mass. It was confirmed that the friction loss increased as the fuel mass increased under the same lubrication conditions. In addition, it was confirmed that the mechanical efficiency decreased as the fuel mass increased. Next, to check the effect of lubrication conditions on friction, the friction loss was measured by controlling the oil temperature. It was confirmed that friction loss increased as the oil temperature decreased at the same fuel mass. As the oil temperature decreases, the viscosity increases, resulting in decreased mechanical efficiency and increased friction loss.

Study on the effect of long-term high temperature irradiation on TRISO fuel

  • Shaimerdenov, Asset;Gizatulin, Shamil;Dyussambayev, Daulet;Askerbekov, Saulet;Ueta, Shohei;Aihara, Jun;Shibata, Taiju;Sakaba, Nariaki
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2792-2800
    • /
    • 2022
  • In the core of the WWR-K reactor, a long-term irradiation of tristructural isotopic (TRISO)-coated fuel particles (CFPs) with a UO2 kernel was carried out under high-temperature gas-cooled reactor (HTGR)-like operating conditions. The temperature of this TRISO fuel during irradiation varied in the range of 950-1100 ℃. A fission per initial metal atom (FIMA) of uranium burnup of 9.9% was reached. The release of gaseous fission products was measured in-pile. The release-to-birth ratio (R/B) for the fission product isotopes was calculated. Aspects of fuel safety while achieving deep fuel burnup are important and relevant, including maintaining the integrity of the fuel coatings. The main mechanisms of fuel failure are kernel migration, silicon carbide corrosion by palladium, and gas pressure increase inside the CFP. The formation of gaseous fission products and carbon monoxide leads to an increase in the internal pressure in the CFP, which is a dominant failure mechanism of the coatings under this level of burnup. Irradiated fuel compacts were subjected to electric dissociation to isolate the CFPs from the fuel compacts. In addition, nondestructive methods, such as X-ray radiography and gamma spectrometry, were used. The predicted R/B ratio was evaluated using the fission gas release model developed in the high-temperature test reactor (HTTR) project. In the model, both the through-coatings of failed CFPs and as-fabricated uranium contamination were assumed to be sources of the fission gas. The obtained R/B ratio for gaseous fission products allows the finalization and validation of the model for the release of fission products from the CFPs and fuel compacts. The success of the integrity of TRISO fuel irradiated at approximately 9.9% FIMA was demonstrated. A low fuel failure fraction and R/B ratios indicated good performance and reliability of the studied TRISO fuel.

고분자전해질형 단위 연료전지의 공기극 유로 채널 내 온도 분포와 플러딩 현상에 관한 연구 (A Study of Temperature Distribution and Flooding Phenomena of Cathode now Channel in a PEM Unit Fuel Cell)

  • 김한상;하태훈;민경덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.101-104
    • /
    • 2006
  • Water management is considered to be one of the main issues to be addressed for the performance improvement of proton exchange membrane (PEM) fuel cell. For good water management, the detailed information on the water distribution inside an operating PEM fuel cell should be available to main an adequate level of hydration in the PEM While avoiding performance decline due to liquid rater flooding. For the PEM fuel cell to be commercially viable as vehicle applications, the flooding on the cathode side should be minimized during the fuel ceil operation. In this study to investigate cathode flooding and its relation with temperature distribution in flow channels, visualization study was performed on the cathode side of a PEM fuel cell. For the direct visualization of temperature field and water transport in cathode flow channels, a transparent cell was designed and manufactured using quartz window. Water transport and its two-phase flow characteristics in flow channels were investigated experimentally. Also, the visualization of temperature distribution In cathode flow channels was made by using IR camera. Results indicated that the temperature rise near the exit of cathode flow channel was found. It is found that this area corresponds to the flooding area from both temperature and flooding visualization results It is expected that this study can effectively contribute to get the detailed data on water transport linked with heat management during the operation of a PEM fuel cell

  • PDF