DOI QR코드

DOI QR Code

Performance Increase for a 2 kW Open Cathode Type Fuel Cell Using Temperature/Humidity Control

2 kW급 개방 캐소드형 연료전지 출력 향상을 위한 온습도 제어

  • 원위위 (전남대학교 대학원) ;
  • 최미화 (한국전력 미래기술연구소) ;
  • 양석란 (한국전력 미래기술연구소) ;
  • 김영배 (전남대학교 기계공학부)
  • Received : 2017.06.26
  • Accepted : 2017.08.30
  • Published : 2017.08.30

Abstract

Temperature and humidity regulations of an open-cathode PEM fuel cell with balance of plant (BOP) are developed in this study. The axial fan, a bubble humidifier, set of solenoid valves and a controller are used to perform temperature and humidity control simultaneously. A fuzzy controller is designed, and it shows its superiority in real-time controlling for strong non-linear dynamical fuel cell system. The axial fan speed is used for temperature control and solenoid valve on/off signal of the bubble humidifier is used for humidity control. The axial fan speed is controlled to keep the fuel cell temperature within the desired point. Meanwhile, the bubble humidifier is utilized to moisture hydrogen to manage the water content of membrane. The results show that the proposed fuzzy controller effectively increases the output power of 10% for a PEM fuel cell.

Keywords

References

  1. K. Nikiforow, J. Ihonen, T. Keranen, H. Karimaki, and V. Alopaeus, "Modeling and experimental validation of H2 gas bubble humidifier for a 50 kW stationary PEMFC system", International Journal of Hydrogen Energy, Vol. 39, No. 18, 2014, pp. 9768-9781. https://doi.org/10.1016/j.ijhydene.2014.04.058
  2. Y. X. Wang, F. F. Qin, K. Ou, and Y. B. Kim, "Temperature control for a polymer electrolyte membrane fuel cell by using fuzzy rule", IEEE Transactions on Energy Conversion, Vol. 31, No. 2, 2016, pp. 667-675. https://doi.org/10.1109/TEC.2015.2511155
  3. S. Strahl, A. Husar, P. Puleston, and J. Riera, "Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System", Fuel Cells, Vol. 1, No. 3, 2014, pp. 466-478.
  4. A. Headley , V. Yu, R. Borduin, D. Chen, and W. Li, "Development and experimental validation of physics-based PEM fuel cell model for cathode humidity control design", IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 3, 2016, pp. 1775-1782. https://doi.org/10.1109/TMECH.2015.2505712
  5. F. Barreras, A. Lozano, J. Barroso, V. Roda, and M. Maza, "Theoretical Model for the Optimal Design of Air Cooling Systems of Polymer Electrolyte Fuel Cells. Application to a High-Temperature PEMFC", Fuel Cells, Vol. 13, No. 2, 2013, pp. 227-237. https://doi.org/10.1002/fuce.201200077
  6. S. Cheng, C. Fang, L. Xu, J. Li, and M. Ouyang, "Model-based temperature regulation of a PEM fuel cell system on a city bus", International Journal of Hydrogen Energy, Vol. 40, No. 39, 2015, pp. 13566-13575. https://doi.org/10.1016/j.ijhydene.2015.08.042
  7. V. Liso, M. P. Nielsen, S. K. Kaer, and H. H. Mortensen, " Thermal modeling and temperature control of a PEM fuel cell system for forklift applications", International Journal Hydrogen Energy, Vol. 39, No. 16, 2014, pp. 8410-8420. https://doi.org/10.1016/j.ijhydene.2014.03.175
  8. G. Vasu, A. K. Tangirala, B. Viswanathan, and K. S. Dhathathreyan, "Continuous bubble humidification and control of relative humidity of H2 for a PEMFC system", International Journal of Hydrogen Energy, Vol. 33, No. 17, 2008, pp. 4640-4648. https://doi.org/10.1016/j.ijhydene.2008.05.051
  9. J. W. Ahn and S. Y. Choe, "Coolant controls of a PEM fuel cell system", Journal of Power Sources, Vol. 179, No. 1, 2008, pp. 252-264. https://doi.org/10.1016/j.jpowsour.2007.12.066
  10. C. Bao, M. Ouyang, and B. Yi, "Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system-I. Control-oriented modeling", International Journal of Hydrogen Energy, Vol. 31, No. 13, 2006, pp. 1879-1896. https://doi.org/10.1016/j.ijhydene.2006.02.031
  11. J. T. Pukrushpan, A. G. Stefanopoulou, and H. Peng, "Control of fuel cell breathing", IEEE Control Systems, Vol. 24, No. 2, 2004, pp. 30-46.
  12. J. K. Gruber, M. Doll, and C. Bordons, "Design and experimental validation of a constrained MPC for the air feed of a fuel cell", Control Engineering Practice, Vol. 17, No. 8, 2009, pp. 874-885. https://doi.org/10.1016/j.conengprac.2009.02.006
  13. Y. X. Wang and Y. B. Kim, "Real-time control for air excess ratio of a PEM fuel cell system", IEEE/ASME Transactions on Mechatronics, Vol. 19, No. 3, 2014, pp. 852-861. https://doi.org/10.1109/TMECH.2013.2262054
  14. P. Hu, G. Y. Cao, X. J. Zhu, and M. Hu, "Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells", International Journal of Hydrogen Energy, Vol. 35, No. 17, 2010, pp. 9110-9123. https://doi.org/10.1016/j.ijhydene.2010.06.046