• Title/Summary/Keyword: fuel distribution

Search Result 1,412, Processing Time 0.03 seconds

The Effect of Piston Bowl Shape on Behavior of Vapor Phases in a GDI Engine (피스톤 형상에 따른 직분식 가솔린기관 내에서의 연료혼합기 거동특성 연구)

  • Hwang, Pil-Su;Kang, Jeong-Jung;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.915-920
    • /
    • 2001
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B, and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure is 5.1MPa. Two dimensional spray fluorescence image of vapor phases was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC $90^{\circ},\;80^{\circ},\;70^{\circ},\;and\;60^{\circ}$. With a fuel injection timing of BTDC $90^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC $60^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

  • PDF

Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations (3차원 CFD 시뮬레이션을 활용한 고분자전해질 연료전지 스택의 매니폴드 크기 최적화)

  • Jeong, Jeehoon;Han, In-Su;Shin, Hyun Khil
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.386-392
    • /
    • 2013
  • Polymer electrolyte membrane (PEM) fuel cell stacks are constructed by stacking several to hundreds of unit cells depending on their power outputs required. Fuel and oxidant are distributed to each cell of a stack through so-called manifolds during its operation. In designing a stack, if the manifold sizes are too small, the fuel and oxidant would be maldistributed among the cells. On the contrary, the volume of the stack would be too large if the manifolds are oversized. In this study, we present a three-dimensional computational fluid dynamics (CFD) model with a geometrically simplified flow-field to optimize the size of the manifolds of a stack. The flow-field of the stack was simplified as a straight channel filled with porous media to reduce the number of computational meshes required for CFD simulations. Using the CFD model, we determined the size of the oxidant manifold of a 30 kW-class PEM fuel cell stack that comprises 99 cells. The stack with the optimal manifold size showed a quite uniform distribution of the cell voltages across the entire cells.

The Effect of Biomass Reburning with Rice Husk on NOx Reduction in Light Oil Flame (경유 화염에서 왕겨를 이용한 바이오매스 재연소의 NOx 저감 효과)

  • Kim, Se-Won;Shin, Myeung-Chul;Lee, Chang-Yeop
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2009
  • Reburning is one of the most useful technologies for reducing nitric oxide in economically and technically. The reburning process was demonstrated as an effective NOx reduction method through injection of a secondary hydrocarbon fuel. An experimental study has been conducted to evaluate the effect of biomass reburning on NOx and CO formation in a light oil flamed combustion furnace. Reburning tests on NOx reduction of air-carried rice husk powder as the reburn fuel and light oil as the main fuel were performed in flames stabilized by a co-flow swirl and fuel staged burner, which was mounted at the front of the furnace. The results included flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. It was observed clearly that NOx concentrations in the exhaust have considerably decreased due to effect of biomass reburning. The maximum NOx reduction rate was 42% when the reburn fuel fraction was 0.18. The CO emissions were kept under 42 ppmv in all experimental tests. And this paper makes clear that in order to decrease NOx concentration in the exhaust when the biomass reburning system is adapted, the control of some factors such as reburn fuel fraction and reburn zone fraction is very important.

  • PDF

The Effect of Air and Spray Turbulence on the Progress in a D.I. Diesel Engine(II)-Combustion Chamber Design for the Use of Emulsified Diesel Oil with Water Particles- (직접분사식 디젤기관의 연소실 형상과 화염의 발달 (2)-유화액연료용 연소실의 형상-)

  • ;;Ohta, Motoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3054-3062
    • /
    • 1995
  • Recently, the improvement of fuel economy and the reduction of exhaust smoke and NOx have been successfully achieved by supplying diesel engines with emulsified diesel oil with water particles. In the present paper, the difference between the combustion of injected emulsified fuel and that of diesel oil spray is clarified by means of taking high-speed and color photographs of the flames in the engine cylinder. As the results, the two kinds of fuels show different combustion behavior each other in the growth of initial flame and in the termination of combustion process in the cylinder. Then, suitable combustion chamber design for the use of emulsified fuel is discussed on the basis of experimental data for various distribution of spray in different kinds of piston cavities. Some methods of clearing troubles caused by emulsified fuel injection are also discussed on the basis of performance tests with a remodeling test engine.

Numerical Simulation of the Mixing and Flow Characteristics in a Micro Cyclone Combustor (마이크로 사이클론 연소기의 혼합 및 유동특성에 관한 수치해석 연구)

  • Choi, Byung-ll;Han, Yong-Shik;Kim, Myung-Bae;Hwang, Cheol-Hong;Oh, Chang-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1042-1047
    • /
    • 2007
  • A micro cyclone combustor was developed to be used as a heat source of thermoelectric power generator (TPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately. The mixing and flow characteristics in the combustor were investigated numerically. The global equivalence ratio ($\Phi$), defined using the fuel and air flow rates, was introduced to examine the flow features of the combustor. The mixing of fuel and air inside the combustor could be well understood using the fuel concentration distribution. It was found that the weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$<1.0. In addition, it was found that small regions that have a negative axial velocity exist near the fuel injection ports. It is assumed that these negative axial velocity regions can stabilize a flame inside the micro cyclone combustor.

Utilization of the Stand-by Fuel Assemblies (예비 핵연료의 이용)

  • Kim, Hark-Rho;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 1981
  • The change in the design-basis refueling strategy caused by the unexpected nuclear fuel failures may result in discharging intact fuel assemblies which were irradiated in the positions symmetric to the failed ones in addition to the failed ones in order to maintain the symmetric power shape in the reactor core. In this work an attempt is made to reuse the intact fuel assemblies which were discharged before reaching the design turnup in the above-described situation so as to improve the fuel utilization. The TDCORE code is used to estimate the flux and power distribution, and the RELOAD-II code for searching the optimal loading pattern with the minimum assembly radial power peaking factor. For the case of the Ko-ri unit 1, its third cycle turnup could be extended to 11,648 MWD/MTU by reusing the four low-burned fuel assemblies removed at the end of the first cycle, and then the loading pattern is searched to the equilibrium cycle.

  • PDF

Development of Thermal Management System Heater for Fuel Cell Vehicles (연료전지 자동차용 TMS 히터 개발)

  • Han, Sudong;Kim, Sungkyun;Kim, Chimyung;Park, Yongsun;Ahn, Byungki
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

SHIELDED LASER ABLATION ICP-MS SYSTEM FOR THE CHARACTERIZATION OF HIGH BURNUP FUEL

  • Ha, Yeong-Keong;Han, Sun-Ho;Kim, Hyun-Gyum;Kim, Won-Ho;Jee, Kwang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.311-318
    • /
    • 2008
  • In modem power reactors, nuclear fuels have recently reached 55,000 MWd/MtU from the initial average burnup of 35,000 MWd/MtU to reduce the fuel cycle cost and waste volume. At such high burnups, a fuel pellet produces fission products proportional to the burnup and creates a typical high burnup structure around the periphery region of the pellet, producing the so called 'rim effect'. This rim region of a highly burnt fuel is known to be ca. $200\;{\mu}m$ in width and is known to affect the fuel integrity. To characterize the local burnup in the rim region, solid sampling in the micro meter region by laser ablation is needed so that the distribution of isotopes can be determined by ICP-MS. For this procedure, special radiation shielding is required for personnel safety. In this study, we installed a radiation shielded laser ablation ICP-MS system, and a performance test of the developed system was conducted to evaluate the safe operation of instruments.

Change in radiation characteristics outside the SNF storage container as an indicator of fuel rod cladding destruction

  • Rudychev, V.G.;Azarenkov, N.A.;Girka, I.O.;Rudychev, Y.V.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3704-3710
    • /
    • 2021
  • The characteristics of the external radiation on the surface of the casks for spent nuclear fuel (SNF) storage by dry method are investigated for the case when the spatial distribution of SNF in the basket changes due to the destruction of the fuel rod claddings. The surface areas are determined, where the changes in fluxes of neutrons, produced by 244Cm actinide, and γ-quanta, produced by long-lived isotopes, are maximum in the result of the decrease in the height of the SNF area. Concrete (VSC-24) and metal (SC-21) casks are considered as examples. The procedure of periodic measurement of the dose rate of neutrons or γ-quanta at the specified points of the cask surface is proposed for identifying the fuel rod cladding destruction. Under normal operation, the decrease in the dose rate produced by neutrons as the function of SNF storage duration is determined by the half-life of 244Cm, and for γ-quanta - by the half-lives of long-lived SNF isotopes. Consequently, a stepwise change in the dose rate of neutrons or γ-quanta, detected by the measurements, as compared to the previous one, would indicate the destruction of the fuel rod claddings.

Computational design and characterization of a subcritical reactor assembly with TRIGA fuel

  • Asuncion-Astronomo, Alvie;Stancar, Ziga;Goricanec, Tanja;Snoj, Luka
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.337-344
    • /
    • 2019
  • The TRIGA fuel of the Philippine Research Reactor-1 (PRR-1) will be used in a subcritical reactor assembly (SRA) to strengthen and advance nuclear science and engineering expertise in the Philippines. SRA offers a versatile and safe training and research facility since it can produce neutrons through nuclear fission reaction without achieving criticality. In this work, we used a geometrically detailed model of the PRR-1 TRIGA fuel to design a subcritical reactor assembly and calculate physical parameters of different fuel configurations. Based on extensive neutron transport simulations an SRA configuration is proposed, comprising 44 TRIGA fuel rods arranged in a $7{\times}7$ square lattice. This configuration is found to have a maximum $k_{eff}$ value of $0.95001{\pm}0.00009$ at 4 cm pitch. The SRA is characterized by calculating the 3-dimensional neutron flux distribution and neutron spectrum. The effective delayed neutron fraction and mean neutron generation time of the system are calculated to be $748pcm{\pm}7pcm$ and $41{\mu}s$, respectively. Results obtained from this work will be the basis of the core design for the subcritical reactor facility that will be established in the Philippines.