• Title/Summary/Keyword: fuel distribution

Search Result 1,412, Processing Time 0.03 seconds

COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

  • Izhutov, Aleksey.L.;Iakovlev, Valeriy.V.;Novoselov, Andrey.E.;Starkov, Vladimir.A.;Sheldyakov, Aleksey.A.;Shishin, Valeriy.Yu.;Kosenkov, Vladimir.M.;Vatulin, Aleksandr.V.;Dobrikova, Irina.V.;Suprun, Vladimir.B.;Kulakov, Gennadiy.V.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.859-870
    • /
    • 2013
  • The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ${\sim}60%^{235}U$; the mini-rods were irradiated to an average burnup of ${\sim}85%^{235}U$. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ~ 40% up to ~ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ~ 40% up to ~ 85%.

A Numerical Study on a High-Temperature Air Combustion Burner for a Compact Fuel-Cell Reformer (연료전기용 컴팩트형 개질기의 고성능화를 위한 고온 공기 연소 기술의 적용에 관한 연구)

  • Lee, Kyoung-Ho;Kwon, Oh-Chae
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.3
    • /
    • pp.229-237
    • /
    • 2005
  • A new burner configuration for a compact fuel-cell reformer with a high-temperature air combustion concept was numerically studied. The burner was designed for a 40 $Nm^3/hr$ hydrogen-generated reformer using natural gas-steam reforming method. In order to satisfy the primary requirements for designing a reformer burner (uniform distribution of temperature along the fuel processor walls and minimum heat losses from the reformer), the features of the present burner configuration included 1) a self-regenerative burner for an exhaust-gas-recirculation to apply for the high-temperature air combustion concept, and 2) an annular-type shield for protecting direct contact of flame with the processor walls. For the injection velocities of the recirculated gas of 0.6-2.4 m/s, the recirculated gas temperature of 1000 K, and the recirculated oxygen mole fraction of 4%, the temperature distributions along the processor walls were found uniform within 100 K variation. Thus, the present burner configuration satisfied the requirement for reducing temperature gradients along the processor walls, and consequently demonstrated that the high-temperature air combustion concept could be applied to the practical fuel reformers for use of fuel cells. The uniformity of temperature distribution is enhanced as the amount of the recirculated gas increases.

Performance Simulation of Planar Solid Oxide Fuel Cells Characteristics: Computational Fluid Dynamics (전산 유체 모델링을 이용한 평판형 고체산화물 연료전지 작동특성 전산모사)

  • Woo Hyo Sang;Chung Yong-Chae
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.69-79
    • /
    • 2004
  • To correctly simulate performance characteristics of fuel cells with a modeling method, various physical and chemical phenomena must be considered in fuel cells. In this study, performance characteristics of planar solid oxide fuel cells were simulated by a commercial CFD code, CFD-ACE+. Through simultaneous considerations for mass transfer, heat transfer and charge movement according to electrochemical reactions in the 3-dimensional planar SOFC unit stack, we could successfully predict performance characteristics of solid oxide fuel cells under operation for structural and progress variables. In other words, we solved mass fraction distribution of reactants and products for diffusion and movement, and investigated qualitative and quantitative analysis for performance characteristics in the SOFC unit stack through internal temperature distribution and polarization curve for electrical characteristics. Through this study, we could effectively predict performance characteristics with variables in the unit stack of planar SOFCs and present systematic approach for SOFCs under operation by computer simulation.

Effect of $UO_2$ Powder Property and Oxygen Potential on Sintering Characteristics of $UO_2-Gd_2O_3$ Fuel

  • Song, Kun-Woo;Kim, Keon-Sik;Yoo, Ho-Sik;Jung, Youn-Ho
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.128-139
    • /
    • 1998
  • The effect of UO$_2$ powder property and oxygen potential on characteristics of sintered UO$_2$-Gd$_2$O$_3$ fuel pellets has been investigated. Two types of powder, mixture of AUC-UO$_2$ and Gd$_2$O$_3$powders (type I) and mixture of ADU-UO$_2$ and Gd$_2$O$_3$powders (type II), have been prepared, pressed, and sintered at 168$0^{\circ}C$ for 4 hours. Four sintering atmospheres with different mixing ratios of $CO_2$to H$_2$ gas ranging from 0 to 0.3 have been used. UO$_2$-Gd$_2$O$_3$ fuel has lower sintered density than UO$_2$ fuel, and the density drop is larger for powder type I than for powder type II. As the oxygen potential increases, the sintered density of UO$_2$-2wt% Gd$_2$O$_3$pellets increases but that of UO$_2$-10wt% Gd$_2$O$_3$ pellets decreases. It is found that pores are newly formed in UO$_2$-10wt% Gd$_2$O$_3$ pellets in accordance with the decrease in density. The grain size of UO$_2$-Gd$_2$O$_3$ fuel increases and a short range G4 distribution becomes homogeneous as the oxygen potential increases. A long range ed distribution and grain structure are inhomogeneous for powder type II. The lattice parameter of (U,Gd)O$_2$solid solution decreases linearly with Gd$_2$O$_3$ content. The dependence of UO$_2$-Gd$_2$O$_3$fuel characteristics on powder type and sintering atmosphere have been discussed.

  • PDF

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR(1)-NUCLEAR DESIGN AND FUEL CYCLE ECONOMY

  • BAE KANG-MOK;KIM MYUNG-HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-100
    • /
    • 2005
  • Kyung-hee Thorium Fuel (KTF), a heterogeneous thorium-based seed and blanket design concept for pressurized light water reactors, is being studied as an alternative to enhance proliferation resistance and fuel cycle economics of PWRs. The proliferation resistance characteristics of the KTF assembly design were evaluated through parametric studies using neutronic performance indices such as Bare Critical Mass (BCM), Spontaneous Neutron Source rate (SNS), Thermal Generation rate (TG), and Radio-Toxicity. Also, Fissile Economic Index (FEI), a new index for gauging fuel cycle economy, was suggested and applied to optimize the KTF design. A core loaded with optimized KTF assemblies with a seed-to-blanket ratio of 1: 1 was tested at the Korea Next Generation Reactor (KNGR), ARP-1400. Core design characteristics for cycle length, power distribution, and power peaking were evaluated by HELIOS and MASTER code systems for nine reload cycles. The core calculation results show that the KTF assembly design has nearly the same neutronic performance as those of a conventional $UO_2$ fuel assembly. However, the power peaking factor is relatively higher than that of conventional PWRs as the maximum Fq is 2.69 at the M$9^{th}$ equilibrium cycle while the design limit is 2.58. In order to assess the economic potential of a heterogeneous thorium fuel core, the front-end fuel cycle costs as well as the spent fuel disposal costs were compared with those of a reference PWR fueled with $UO_2$. In the case of comprising back-end fuel cycle cost, the fuel cycle cost of APR-1400 with a KTF assembly is 4.99 mills/KWe-yr, which is lower than that (5.23 mills/KWe-yr) of a conventional PWR. Proliferation resistance potential, BCM, SNS, and TG of a heterogeneous thorium-fueled core are much higher than those of the $UO_2$ core. The once-through fuel cycle application of heterogeneous thorium fuel assemblies demonstrated good competitiveness relative to $UO_2$ in terms of economics.

Thermo-mechanical coupling behavior analysis for a U-10Mo/Al monolithic fuel assembly

  • Mao, Xiaoxiao;Jian, Xiaobin;Wang, Haoyu;Zhang, Jingyu;Zhang, Jibin;Yan, Feng;Wei, Hongyang;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2937-2952
    • /
    • 2021
  • A typical three-dimensional finite element model for a fuel assembly is established, which is composed of 16 monolithic U-10Mo fuel plates and Al alloy frame. The distribution and evolution results of temperature, displacement and stresses/strains in all the parts are numerically obtained and analyzed with a self-developed code of FUELTM. The simulation results indicate that (1) the out-of-plane displacements of Al alloy side plates are mainly attributed to the bending deformations; (2) enhanced out-of-plane displacements appear in fuel plates adjacent to the outside Al plates, which results from the occurred bending deformations due to the applied constraints of outside Al plates; (3) an intense interaction of fuel foil with the cladding occurs near the foil edge, which appears more heavily in the fuel plates adjacent to the outside Al plates. The maximum first principal stresses in the fuel foil are similar for all the fuel plates and appear near the fuel foil edge; while, the through-thickness creep strains of fuel foil in the fuel plate near the central region of fuel assembly are larger, and the induced creep damage might weaken the fuel skeleton strength and raise the fuel failure risk.

Effects of Injection Timing and Intake Flow on In-Cylinder Fuel Behavior in a GDI Engine (직접분사식 가솔린 엔진에서 분사시기와 흡입유동이 실린더 내 연료의 거동에 미치는 영향)

  • 이정훈;강정중;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.7-13
    • /
    • 2003
  • The purpose of this study is to investigate the effect of the in-cylinder flows and different injection timings on fuel behavior in the cylinder of a GDI engine. Three different flows types induced by using masked port, unmasked port, and port deactivation were tumble, swirl&tumble, and high swirl respectively. LIEF technique was applied to investigate the mixture formation and fuel distribution at ignition time in the transparent engine with optical access through the piston top and upper part of cylinder liner. Injection timings of 180,90, and 60 degrees before TDC were examined. It was found that tumble flow was more effective on the homogeneous mixture formation than other flow and swirl flow transported more fuel vapor to the exhaust side at early injection mode, and swirl and swirl & tumble flow made fuel vapor concentrate around the cylinder center at late injection mode.

An Operation Algorithm for a 2 Shaft Parallel Type Hybrid Electric Vehicle for Optimal Fuel Economy (2축 병렬형 하이브리드 차량의 최저 연비 주행 알고리즘)

  • 최득환;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.122-130
    • /
    • 2001
  • In this paper, an operational algorithm for a 2-shaft parallel hybrid electric vehicle is suggested for the minimization of operation cost. The operation cost is obtained as a summation of the engine fuel cost and the motor electricity cost. The electrical cost function is estimated in case of motoring, and generating when the recuperation is carried out during the braking. In addition, weight function is introduced in order to maintain the battery state of charge. Based on the operation algorithm, the optimal engine operation point that minimizes the operation cost is obtained with respect to the required vehicle power for every state of charge of battery. The optimal operation point provides the optimal power distribution of the engine and the motor for a required vehicle power Simulation was performed and the fuel economy of the hybrid vehicle was compared to that of the conventional vehicle. Simulation results showed that hybrid vehicle's fuel economy can be improved as much as 45∼48% compared to the conventional vehicle's.

  • PDF

Study on system dynamic behaviors for 4kW-class fuel cell hybrid vehicle (4kW급 연료전지 하이브리드 자동차 개발을 위한 시스템 동특성 연구)

  • Lee, Dong-Ryul;Park, Kwang-Jin;Bae, Joong-Myeon;Jeong, Jae-Haw;Ji, Hyun-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.93-96
    • /
    • 2006
  • PEMFC(proton exchange membrane fuel cell) is most applicable to automobile in various types of fuel cell. However, to improve system dynamics and logn term Performance fuel cell is supported by auxiliary power unit forming hybrid system. The operating strategy of hybrid system influences on efficiency and stability. In this paper the proper strategies are compared each other considering power distribution and stable system operation. The chosen strategy is simulated by MATLAB simulink to forecast realization of fuel cell hybrid vehicle

  • PDF

The Study of the Interaction between Dual Spray by Two Swirl Injectors (이중 선회 분무간의 상호작용에 관한 연구)

  • Park, B.S.;Lee, D.J.;Kim, H.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.141-148
    • /
    • 2002
  • Experimental investigation of the interaction between dual spray formed by swirl type injector was conducted. Experimental parameter was fuel temperature, varied in the range from $-20^{\circ}C$ to $120^{\circ}C$. Measuring parameter were vertical distance from injector tip to patternator and gap between injectors. Volumetric distiribution and SMD were measured for the various combination of parameters. The results of present study show that the arithmetic sum of each of spray is not equal to dual spray, but it is equal above specific fuel temperature. As the increases of fuel temperature, SMD decreases and becomes more uniform. As the increases of gap between injectors, fuel volume and SMD at collision area increases, but penetrated fuel decreases.

  • PDF