• Title/Summary/Keyword: fuel contamination

Search Result 130, Processing Time 0.049 seconds

Applicability of Resistivity/Capacitance Measurement on CPT Module for Investigation of Subsurface Contamination (오염지반 조사를 위한 전기비저항/정전용량 측정콘의 적용성 평가)

  • Oh, Myoung-Hak;Kim, Yong-Sung;Yoo, Dong-Ju;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.330-337
    • /
    • 2006
  • Resistivity cone penetrometer test (RCPT) can be employed at a relatively low cost for delineation of subsurface contamination in situ, and then be supplemented with a minimum confirmatory sampling and laboratory testing program. While the resistivity measurement have potential to investigate the subsurface contamination, resistivity measurements alone will lead to some degree of ambiguity in the results. In this study, capacitance measurement was incorporated into the RCPT to overcome the ambiguity inherent in electrical resistivity measurements for delineating the subsurface contamination. This study is focused on verifying the applicability of resistivity and capacitance measurements on CPT module to provide information on contaminated subsurface by heavy metal and petroleum hydrocarbon. Laboratory model tests were performed to evaluate the sensitivity of the measured resistivity and relative capacitance on the water content and different types of contaminants. Test results show that simultaneous measurement of electrical resistivity and capacitance can give more reliable information on subsurface contamination.

  • PDF

Enhancement of Soil Flushing Method by Ultrasonic Radiation on Diesel Contaminated Soils (디이젤 오염토 수세시 초음파가 세척률 증가에 미치는 영향에 관한 연구)

  • 김영욱;김지형;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.401-406
    • /
    • 2000
  • Spilling of petroleum hydrocarbons such as gasoline, motor oils, and diesel fuel from underground storage tanks (USTs) is a major source of contamination to ground water and soils. In response to the need of developing an effective and economical cleanup technique, this study investigates the effectiveness of using sonication to enhance the soil flushing method. The study involves laboratory testing, and the testing was conducted using a specially designed and fabricated device to determine the effect of sonication on contaminant removal. The sonication was applied at 20 kHz frequency under different power levels. Test soil was Joomoonjin Sand, and diesel fuel was used as a contaminant of soil flushing test. The results of the investigation show that sonication enhanced the contaminant removal from soils significantly, and the degree of enhancement varied with power levels of sonication. Based on the results of the study, it is concluded that the flushing method with sonication has a great potential to become an effective method for removing petroleum hydrocarbons from the contaminated ground.

  • PDF

A Study on Contamination of Hydrogen Permeable Pd- based Membranes (Pd 계열 수소 분리막의 오염에 관한 연구)

  • Han, Jonghee;Yoon, Sung Pil;Nam, Suk Woo;Lim, Tae-Hoon;Hong, Seong-Ahn;Kim, Jinsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • $H_2$ permeation flux though a $100{\mu}m-thick$ Pd-Ru (6wt%) membrane was measured at various temperatures and pressures. The permeation flux followed the Sievert's law and thus the rate-limiting step of the hydrogen permeation was the bulk atomic diffusion step. The activation energy of the permeation flux was obtained at 17.9 kJ/mol and this value is consistent with those published previously. While no degradation of the permeation flux wasfound in the membrane exposed to the $O_2$ and $CO_2$ environments for 100 hours, the membrane exposed to $N_2$ environment for 100 hours showed the degradation in the $H_2$ permeation flux. The $H_2$ permeation was decreased as the exposure temperature to $N_2$, environment was increased. The $H_2$ permeation flux was fully recovered after the membrane was kept in the $H_2$ environment for certain time. The permeation flux degradation might be caused by the formation of metal nitride on the membrane surface.

Performance Evaluation of an Automotive Fuel Filter by Multi-Pass Filtration Test (다순환 여과시험에 의한 자동차용 연료필터의 성능 평가)

  • 이재천;장지현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.219-226
    • /
    • 2002
  • Filtration performance of an automotive fuel filter was evaluated based on the theory of Beta ratio. This study also introduced the fuel components' contamination performance test stand incorporating the multi-pass filtration test circuit. The theoretical basis of multi-pass test and test procedure were described in detail. The specification of commercial fuel filter currently available was just the maximum pressure drop across the filter assembly and the holding capacity of contaminants. However, test results revealed that the fuel filter tested could not maintain consistent Beta ratio, that is filtration efficiency, although it had the holding capacity close to the specification. Hence the Beta ratio should be specified in service life. The results also showed that filtration system model should be refined including desorption ratio to estimate the variable Beta ratio in the test.

Decrease of PEMFC Performance by Ion Contamination (이온 오염에 의한 고분자전해질 연료전지의 성능저하)

  • Song, Jinhoon;Woo, Myungwu;Kim, Saehoon;Ahn, Byungki;Lim, Taewon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.187-190
    • /
    • 2012
  • Contamination of ion from cathode air on the membrane and electrode assembly (MEA) is the serious degradation source in proton exchange membrane fuel cells (PEMFC). In this study, concentration of ions in air at industry region, street and seaside were measured. There were comparably high concentration of $Na^+$, $K^+$, $Ca^{2+}$ and $Fe^{3+}$ in this regions. This paper shows the effects of MEA contamination by these ions generated from humidification water. After 170 hours of fuel cell operation using city water as humidification water, the performance of unit cell decrease to 11% of initial performance. The electrolyte membrane easily absorbed foreign contaminant cations due to the stronger affinity of foreign cations with the sulfonic acid group compared to $H^+$. The contaminant ions existing in the interface between the platinum catalyst and ionomer layer turn out to be the most serious factor to decrease cell performance.

Graphic Simulator for Analyzing the Remote Operation of the Advanced Spent Fuel Conditioning Process

  • Song, Tai-Gil;Kim, Sung-Hyun;Lee, Jong-Ryul;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1319-1322
    • /
    • 2003
  • KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. Equipment used for such a spent fuel recycling and management process must operate in intense radiation fields as well as in a high temperature. Therefore, remote maintenance has a played a significant role in this process because of combined chemical and radiological contamination. Hence suitable remote handling and maintenance technology needs to be developed along with the design of the process concepts. To do this, we developed the graphic simulator for the ACP. The graphic simulator provides the capability of verifying the remote operability of the process without fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the graphic simulator, not in a real environment. The graphic simulator will substantially reduce the cost of the development of the remote handling and maintenance procedure as well as the process equipment, while at the same time producing a process and a remote maintenance concept that is more reliable, easier to implement, and easier to understand.

  • PDF

Performance of Automotive Wheel Bearing Grease by Water Contents (수분함량에 따른 자동차용 휠베어링 그리스 품질특성 연구)

  • Lim, Young-Kwan;Lee, Eun-Hee;Lee, Joung-Min;Jeong, Choong-Sub
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.275-280
    • /
    • 2011
  • Automotive wheel bearing grease helps to reduce stresses and prevent wear of wheel bearings. But it is easily contaminated by water and other contaminants. In this study, we investigated the property change of automotive wheel bearing grease under water contamination. The result showed that some properties such as dropping point, work penetration and oxidation stability were not influenced by water content. However, most of properties such as work stability, water washout characteristics, leakage tendency, oil separation, evaporation loss and rust protection became worse after water was added. This is thought that added water makes the interaction weak between thickener and base oil of grease.

Study on the soil contamination characteristics according to the functions of the returned U.S. military base (반환미군기지 기능별 토양오염특성에 관한 연구)

  • Oh, Chang-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.481-489
    • /
    • 2013
  • There are U.S. troops with a force about 290,000 strong stationed all around the world, approximately 150 countries. Among the troops, USFK has performed principal part with its stationing for 50 years against the military threat of North Korea. However, as a result of an investigation made into environmental contamination of several bases which were restituted from US to ROK by the Land Partnership Plan in the process of relocation of USFK, it was found that the area was contaminated by not only TPH and BTEX caused by diesel fuel and JP-8 but also various heavy metal over the standard level according to the operations of corps. Among these bases, 4 corps, each of which has different duties and function, were chosen to be analyzed for the characteristics and degrees of soil contamination. Fisrt of all, in armored camp the soil was contaminated by TPH and heavy metal (Zn, Ni, Pb) due to the repairing activities of tracked vehicles and shooting exercises. In army aviation camp, the soil was contaminated by TPH, BTEX and heavy metal (Zn, Cd) due to repairing activities of aircrafts. Also, in engineer camp there was contaminated area polluted by TPH and heavy metal (Zn, Pb) caused by open-air storage of various construction materials and TPH, BTEX and heavy metal (Zn, Pb, Cu) contamination of aircraft shooting area in shooting range camp were detected. Managing environment will be more effective when we identify the contaminative characteristics and take necessary measures in advance.

Investigation of Pollution of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Soil near Railway Rails (철도레일 부근 토양의 다환방향족 탄화수소 및 중금속 오염도 조사)

  • Choi, Hyun-Kyung;Yoon, In-Ju;Shin, Tae-Cheon;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.947-956
    • /
    • 2018
  • Trains have been a major means of transport in Korea during these past decades. However, train facilities such as stations and repair shops are contaminated with organic and inorganic substances. There is a high probability of train facility contamination with polyaromatic hydrocarbons (PAHs). This study evaluated the PAH and heavy metal contamination of soil near railroads in the Kyungpook area. A total of 18 soil samples were collected from the railroads and analyzed for 16 PAHs and 6 heavy metal species. The contamination level of the top soil was found to be slightly higher than that of the subsoil for contamination with PAHs. The ratio of carcinogenic PAH concentration to the total PAH concentration was relatively high, with a maximum of 0.9. The toxicity equivalent (TEQ) of the PAHs were 500.6 ng/kg in the topsoil and 355.5 ng/kg in the subsoil. The ratio of low molecular PAHs (LPAHs) to high molecular PAHs (LPAHs) ranged from 6.7 to 29.5; this shows that contamination is primarily due to combustion of fuel rather than due to petroleum. The ratio of phenanthrene to anthracene and the ratio of fluoranthene to pyrene also show that contamination occurred due to combustion for transportation. The heavy metal contamination level was lower than the Korean standard, but higher than the background concentration; this indicates that the soil was affected by the operation of the railways.

Fluorescence Characteristic Spectra of Domestic Fuel Products through Laser Induced Fluorescence Detection

  • Wu, Ting-Nien;Chang, Shui-Ping;Tsai, Wen-Hsien;Lin, Cian-Yi
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.18-25
    • /
    • 2014
  • Traditional investigation procedures of soil and groundwater contamination are followed by soil gas sampling, soil sampling, groundwater sampling, establishment of monitoring wells, and groundwater monitoring. It often takes several weeks to obtain the analysis reports, and sometimes, it needs supplemental sampling and analysis to delineate the polluted area. Laser induced fluorescence (LIF) system is designed for the detection of free-phase petroleum pollutants, and it is suitable for on-site real-time site investigation when coupling with a direct push testing tool. Petroleum products always contain polycyclic aromatic hydrocarbon (PAH) compounds possessing fluorescence characteristics that make them detectable through LIF detection. In this study, LIF spectroscopy of 5 major fuel products was conducted to establish the databank of LIF fluorescence characteristic spectra, including gasoline, diesel, jet fuel, marine fuel and low-sulfur fuel. Multivariate statistical tools were also applied to distinguish LIF fluorescence characteristic spectra among the mixtures of selected fuel products. This study successfully demonstrated the feasibility of identifying fuel species based on LIF characteristic fluorescence spectra, also LIF seemed to be uncovered its powerful ability of tracing underground petroleum leakages.