• 제목/요약/키워드: fuel cladding

검색결과 413건 처리시간 0.028초

고온, 수증기 속에서 산화된 질칼로이-4 핵연료 피복관의 변형 특성에 관한 연구 (Deformation Characteristics of Zircaloy-4 Fuel Cladding due to Oxidation in Environment of High Temperature and Steam)

  • Jung, Sung-Hoon;Suh, Kyung-Soo;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • 제18권3호
    • /
    • pp.218-227
    • /
    • 1986
  • 가상적인 냉각제 상실 사고시의 조건하에 일어날 수 있는 취약화 현상에 대한 자료를 얻기 위하여 고온의 수중기 분위기에서 Zircaloy-4 핵연료피복관의 산화거동과 기계적성질 변화에 대한 연구를 수행하였다. 시편은 캔두형핵연료 피복관으로 사용되는 질칼로이 튜브를 사용하였으며 냉각제 상실 사고시 야기될 수 있는 수중기 분위기속 90$0^{\circ}C$와 1,00$0^{\circ}C$에서 유지시간을 변경하여 가면서 산화시켰다. 질칼로이 피복관의 표면과 내부에서 ZrO$_2$$\alpha$상의 형성속도 E는 온도와 시간의 함수인 E=1.1√Dt+0.002로 나타났다. 여기서 D는 온도에 의존하는 화산계수임. 시편에 대한 인장강도, 후프강도 및 연신율을 측정한 결과 단시간 산화된 시편의 인장강도는 원래의 피복관에 비해 처음에는 약간 증가하다가 계속되는 유지 시간에 따라 감소하였다. 후프강도는 유지 시간에 따라 많이 감소하지 않았으며 외경 방향의 인장율을 급격히 감소하였다. 피복관의 선택 방위 측정 결과 원래의 피복관 입자는 대부분이 기저면(0001)에 대한 극축이 외경 방향에 평행하게 놓였었으나 1,00$0^{\circ}C$에서 열처리한 경우는 극축이 외경 방향에 수직으로 변경됨을 알 수 있었으며 이러한 결정면의 방위분포 결과가 후프강도의 유지에 기여하는 것으로 추측되었다.

  • PDF

Data analysis of simulated fuel-loaded sea transportation tests under normal conditions of transport

  • JaeHoon Lim;Woo-seok Choi
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.375-388
    • /
    • 2024
  • In this study, to evaluate the shock and vibration load characteristics of used fuel, a sea transportation test was conducted using simulated fuel assemblies under normal transport conditions. An overall test data analysis was performed based on the measured strain and acceleration data obtained from cruise, rotation, acceleration, braking, depth of water, and rolling tests. In addition, shock response spectrum and power spectral densities were obtained for each test case. Amplification and attenuation characteristics were investigated based on the load path. The load was amplified as it passed from the overpack to the simulated used fuel-assembly. As a result of the RMS trend analysis, the fuel-loading position of the transportation package affected the measured strain in the fuel rod, and the maximum strains were obtained at the spans with large spacing. However, even these maximum strains were very small compared to the fatigue strength and the cladding yield strength. Moreover, the fuel rods located on the side exhibited a larger strain value than those at the center.

금속연료-피복재 상호확산 거동에 미치는 기상증착법의 영향 (Effect of Vapor Deposition on the Interdiffusion Behavior between the Metallic Fuel and Clad Material)

  • 김준환;이병운;이찬복;지승현;윤영수
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.549-556
    • /
    • 2011
  • This study aimed to evaluate the performance of diffusion barriers in order to prevent fuel-cladding chemical interaction (FCCI) between the metallic fuels and the cladding materials, a potential hazard for nuclear fuel in sodium-cooled fast reactors. In order to prevent FCCI, Zr or V metal is deposited on the ferritic-martensitic stainless steel surface by physical vapor deposition with a thickness up to $5{\mu}m$. The diffusion couple tests using uranium alloy (U-10Zr) and a rare earth metal such as Ce-La alloy and Nd were performed at temperatures between 660~800$^{\circ}C$. Microstructural analysis using SEM was carried out over the coupled specimen. The results show that significant interdiffusion and an associated eutectic reaction ocurred in the specimen without a diffusion barrier. However, with the exception of the local dissolution of the Zr layer in the Ce-La alloy, the specimens deposited with Zr and V exhibited superior eutectic resistance to the uranium alloy and rare earth metal.

고압 수증기하 산화에서 핵연료 피복관내 수소효과 연구 (The Effect of Hydrogen in the Nuclear Fuel Cladding on the Oxidation under High Temperature and High Pressure Steam)

  • 정윤목;정성기;박광헌;노선호
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.7-12
    • /
    • 2014
  • The characteristics of oxidation for the Zry-4 was measured in the $800^{\circ}C$ and high steam pressure (50 bar, 75 bar, 100 bar) conditions, using an apparatus for high pressure steam oxidation. The effect of accelerated oxidation by high-pressure steam was increased more than 60% in hydrogen-charged cladding than normal cladding. This difference between hydrogen charged claddings and normal claddings tends to be larger as the higher pressure. The accelerated oxidation effect of hydrogen charging cladding is regarded as the hydrogen on the metal layer affects the formation of the protective oxide layer. The creation of the sound monoclinic phase in Zry-4 oxidation influences reinforcement of corrosion-resistance of the oxide layer. The oxidation is estimated to be accelerated due to the creation of equiaxial type oxide film with lower corrosion resistance than that of columnar type oxide film. When tetragonal oxide film transformed into the monoclinic oxide film, surface energy of the new monoclinic phase reduced by hydrogen in the metal layer.

The DISNY facility for sub-cooled flow boiling performance analysis of CRUD deposited zirconium alloy cladding under pressurized water reactor condition: Design, construction, and operation

  • Ji Yong Kim;Yunju Lee;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3164-3182
    • /
    • 2023
  • The CRUD on the fuel cladding under the pressurized water reactor (PWR) operating condition causes several issues. The CRUD can act as thermal resistance and increases the local cladding temperature which accelerate the corrosion process. The hideout of boron inside the CRUD results in axial offset anomaly and reduces the plant's shutdown margin. Recently, there are efforts to revise the acceptance criteria of emergency core cooling systems (ECCS), and additionally require the modeling of the thermal resistance effect of the CRUD during the performance analysis. There is an urgent need for the evaluation of the effect of the CRUD deposition on the cladding heat transfer under PWR operating conditions, but the experimental database is very limited. The experimental facility called DISNY was designed and constructed to analyze the CRUD-related multi-physical phenomena, and the performance analysis of the constructed DISNY facility was conducted. The thermal-hydraulic and water chemistry conditions to simulate the CRUD growth under PWR operating conditions were established. The design characteristics and feasibility of the DISNY facility were validated by the MARS-KS code analysis and separate performance tests. In the current study, detailed design features, design validation results, and future utilization plans of the proposed DISNY facility are presented.

Modeling of central void formation in LWR fuel pellets due to high-temperature restructuring

  • Khvostov, Grigori
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1190-1197
    • /
    • 2018
  • Analysis of the GRSW-A model coupled into the FALCON code is extended by simulation of central void formation in fuel pellets due to high-temperature fuel restructuring. The extended calculation is verified against published, well-known experimental data. Good agreement with the data for a central void diameter in pellets of the rod irradiated in an Experimental Breeder Reactor is shown. The new calculation methodology is employed in comparative analysis of modern BWR fuel behavior under assumed high-power operation. The initial fuel porosity is shown to have a major effect on the predicted central void diameter during the operation in question. Discernible effects of a central void on peak fuel temperature and Pellet-Cladding Mechanical Interaction (PCMI) during a simulated power ramp are shown. A mitigating effect on PCMI is largely attributed to the additional free volume in the pellets into which the fuel can creep due to internal compressive stresses during a power ramp.

Hydriding Failure Analysis Based on PIE Data

  • Kim Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.378-386
    • /
    • 2003
  • Recently failures of nuclear fuel rods in Korean nuclear power plants were reported and their failure causes have been investigated by using PIE techniques. Destructive and physico-chemical examinations reveal that the clad hydriding phenomena had caused the rod failures primarily and secondarily in each case. In this study, the basic mechanisms of the primary and the secondary hydriding failures are reviewed, PIE data such as cladding inner and outer surface oxide thickness and the restructuring of the fuel pellets are analyzed, and they are compared with the predicted behaviors by a fuel performance code. In addition, post-defected fuel behaviors are reviewed and qualitatively analyzed. The results strongly support that the hydriding processes, primary and secondary, played critical roles in the respective fuel rods failures and the secondary hydriding failure can take place even in the fuel rod with low linear heat generation rate.

WASTE CLASSIFICATION OF 17×17 KOFA SPENT FUEL ASSEMBLY HARDWARE

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Jong-Won;Choi, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • 제43권2호
    • /
    • pp.149-158
    • /
    • 2011
  • Metal waste generated from the pyroprocessing of 10 MtU of spent fuel was classified by comparing the specific activity of a relevant radionuclide with the limit value of the specific activity specified in the Korean acceptance criteria for a lowand intermediate-level waste repository. A Korean Optimized Fuel Assembly design with a 17${\times}$17 array, an initial enrichment of 4.5 weight-percent, discharge burn-up of 55 GWD/MtU, and a 10-year cooling time was considered. Initially, the mass and volume of each structural component of the assembly were calculated in detail, and a source term analysis was subsequently performed using ORIGEN-S for these components. An activation cross-section library generated by the KENO-VI/ORIGEN-S module was utilized for top-end and bottom-end pieces. As a result, an Inconel grid plate, a SUS plenum spring, a SUS guide tube subpart, SUS top-end and bottom-end pieces, and an Inconel top-end leaf spring were determined to be unacceptable for the Gyeongju low- and intermediate-level waste repository, as these waste products exceeded the acceptance criteria. In contrast, a Zircaloy grid plate and guide tube can be placed in the Gyeongju repository. Non-contaminated Zircaloy cladding occupying 76% of the metal waste was found to have a lower level of specific activity than the limit value. However, Zircaloy cladding contaminated by fission products and actinides during the decladding process of pyroprocessing was revealed to have 52 and 2 times higher specific activity levels than the limit values for alpha and $^{90}Sr$, respectively. Finally, it was found that 88.7% of the metal waste from the 17${\times}$17 Korean Optimized Fuel Assembly design should be disposed of in a deep geological repository. Therefore, it can be summarized that separation technology with a higher decontamination factor for transuranics and strontium should be developed for the efficient management of metal waste resulting from pyroprocessing.

Fixed neutron absorbers for improved nuclear safety and better economics in nuclear fuel storage, transport and disposal

  • M. Lovecky;J. Zavorka;J. Jirickova;Z. Ondracek;R. Skoda
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2288-2297
    • /
    • 2023
  • Current designs of both large reactor units and small modular reactors utilize a nuclear fuel with increasing enrichment. This increasing demand for better nuclear fuel utilization is a challenge for nuclear fuel handling facilities. The operation with higher enriched fuels leads to reduced reserves to legislative and safety criticality limits of spent fuel transport, storage and final disposal facilities. Design changes in these facilities are restricted due to a boron content in steel and aluminum alloys that are limited by rolling, extrusion, welding and other manufacturing processes. One possible solution for spent fuel pools and casks is the burnup credit method that allows decreasing very high safety margins associated with the fresh fuel assumption in spent fuel facilities. This solution can be supplemented or replaced by an alternative solution based on placing the neutron absorber material directly into the fuel assembly, where its efficiency is higher than between fuel assemblies. A neutron absorber permanently fixed in guide tubes decreases system reactivity more efficiently than absorber sheets between the fuel assemblies. The paper summarizes possibilities of fixed neutron absorbers for various nuclear fuel and fuel handling facilities. Moreover, an absorber material was optimized to propose alternative options to boron. Multiple effective absorbers that do not require steel or aluminum alloy compatibility are discussed because fixed absorbers are placed inside zirconium or steel cladding.

3 차원 간극 열전도도 모델을 이용한 핵연료봉의 열적 비대칭 거동 해석 (Simulation of Asymmetric Fuel Thermal Behavior Using 3D Gap Conductance Model)

  • 강창학;이성욱;양동열;김효찬;양용식
    • 대한기계학회논문집A
    • /
    • 제39권3호
    • /
    • pp.249-257
    • /
    • 2015
  • 원자력 발전소의 반응로에는 핵분열 에너지를 생성하고 방사성 물질의 유출을 막는 핵연료 집합체가 있으며, 이러한 집합체는 핵연료와 피복관으로 구성되어 있는 핵 연료봉으로 구성되어 있다. 원자로에서 핵연료봉 거동의 안전성을 평가하기 위해 해석적인 방법을 적용하며 이러한 평가 코드를 핵 연료 성능 코드라 한다. 경수로 핵연료 해석에서는 간극의 두께에 따라 열전도도가 크게 영향을 받는 간극 열전도도가 주요 거동해석에 영향을 미친다. 본 연구에서는 간극 두께에 따라 열전도도가 변화하는 3 차원 간극 요소(Gap element)를 제안하였으며, 이를 적용하기 위해 3 차원 열탄성 모듈을 FORTRAN90을 이용하여 개발하였다. 제안된 3 차원 간극 요소를 이용하여 핵 연료봉에서 발생할 수 있는 비대칭적인 형상인 핵 연료 표면에 결함이 생긴 경우 MPS(Missing Pellet Surface)와 핵연료봉의 편심(Eccentricity of the nuclear fuel rod) 형상에 대하여 3 차원 해석을 진행하였다.