• Title/Summary/Keyword: fuel channel

Search Result 406, Processing Time 0.029 seconds

ANALYSES OF FLUID FLOW AND HEAT TRANSFER INSIDE CALANDRIA VESSEL OF CANDU-6 REACTOR USING CFD

  • YU SEON-OH;KIM MANWOONG;KIM HHO-JUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.575-586
    • /
    • 2005
  • In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a loss of coolant accident (LOCA) with coincident loss of emergency core cooling (LOECC), as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines.

Experiments and MAAP4 Assessment for Core Mixture Level Depletion After Safety Injection Failure During Long-Term Cooling of a Cold Leg LB-LOCA

  • Kim, Y. S.;B. U. Bae;Park, G. C.;K. Y. Sub;Lee, U. C .
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.91-107
    • /
    • 2003
  • Since DBA(Design Basis Accidents) has been studied rather separately from SA(Severe Accidents) in the conventional nuclear reactor safety analysis, the thermal hydraulics during transition between DBA and SA has not been identified so much as each accident itself. Thus, in this study, the thermal hydraulic behavior from DBA to the commencement of SA has been experimentally and analytically investigated for the long-term cooling phase of LB-LOCA(Large-Break Loss-of-Coolant Accident). Experiments were conducted for both cases of the loop seal open and closed in an integral test loop, named as SNUF (Seoul National University Facility), which was scaled down to l/6.4 in length and 1/178 in area of the APR1400 (Advanced Power Reactor 1400MWe). The core mixture level was a main measured value since it took major role in the fuel heat-up rate, the location of fuel melting initiation and the channel blockage by melting material during SA. Experimental results were compared to MAAP4.03 to assess its model of calculating the core mixture level. MAAP4.03 overestimates the core two- phase mixture level because sweep-out and spill-over and the measures to simulate the status of loop seal are not included, which is against the conservatism. Thus, it is recommended that MAAP4.03 should be improved to simulate the thermal hydraulic phenomena, such as sweep-out, spill-over and the status of loop seal.

Verification of neutronics and thermal-hydraulic coupled system with pin-by-pin calculation for PWR core

  • Zhigang Li;Junjie Pan;Bangyang Xia;Shenglong Qiang;Wei Lu;Qing Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3213-3228
    • /
    • 2023
  • As an important part of the digital reactor, the pin-by-pin wise fine coupling calculation is a research hotspot in the field of nuclear engineering in recent years. It provides more precise and realistic simulation results for reactor design, operation and safety evaluation. CORCA-K a nodal code is redeveloped as a robust pin-by-pin wise neutronics and thermal-hydraulic coupled calculation code for pressurized water reactor (PWR) core. The nodal green's function method (NGFM) is used to solve the three-dimensional space-time neutron dynamics equation, and the single-phase single channel model and one-dimensional heat conduction model are used to solve the fluid field and fuel temperature field. The mesh scale of reactor core simulation is raised from the nodal-wise to the pin-wise. It is verified by two benchmarks: NEACRP 3D PWR and PWR MOX/UO2. The results show that: 1) the pin-by-pin wise coupling calculation system has good accuracy and can accurately simulate the key parameters in steady-state and transient coupling conditions, which is in good agreement with the reference results; 2) Compared with the nodal-wise coupling calculation, the pin-by-pin wise coupling calculation improves the fuel peak temperature, the range of power distribution is expanded, and the lower limit is reduced more.

Remote field Eddy Current Technique Development for Gap Measurement of Neighboring Tubes of Nuclear Fuel Channel in Pressurized Heavy Water Reactor (중수로 핵연료채널과 인접관의 간격측정을 위한 원거리장 와전류검사 기술개발)

  • Jung, H.K.;Lee, D.H.;Lee, Y.S.;Huh, H;Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Liquid Injection Nozzle(LIN) tube and Calandria tube(CT) in pressurized Heavy Water Reactor (PHWR) are .ross-aligned horizontally. These neighboring tubes can contact each other due to the sag of the calandria tube resulting from the irradiation creep and thermal creep, and fuel load, etc. In order to judge the contact which might be the safety concern, the remote field eddy current (RFEC) technology is applied for the gap measurement in this paper. LIN can be detected by inserting the RFEC probe into pressure tube (PT) at the crossing point directly. To obtain the optimal conditions of the RFEC inspection, the sensitivity, penetration and noise signals are considered simultaneously. The optimal frequency and coil spacing are 1kHz and 200mm respectively. Possible noises during LIN signal acquisition are caused by lift-off, PT thickness variation, and gap variation between PT and CT. The simulated noise signals were investigated by the Volume Integral Method(VIM). Signal analysis on the voltage plane describes the amplitude and shape of LIN and possible defects at several frequencies. All the RFEC measurements in the laboratory were done in variance with the CT/LIN gap and showed the relationship between the LIN gap and the signal parameters by analyzing the voltage plane signals.

The Effect of Fluid Flow on Power Density in a Horizontal-flow Microbial Fuel Cell (수평 흐름형 미생물 연료전지에서 유체의 흐름 형태에 따른 전력수율 평가)

  • Lee, Chae-Young;Park, Su-Hee;Song, Young-Chae;Yoo, Kyu-Seon;Chung, Jae-Woo;Han, Sun-Kee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • This study evaluated the effect of fluid flow on the power density in a horizontal-flow microbial fuel cell (MFC). The maximum power densities in four types of flow induced by different channel types in the anode chamber were investigated. The fluid flow at each channel was analyzed using tracer tests. Results of polarization curves showed that the maximum power densities of case 1, 2, 3 and 4 were 95.7, 129.1, 190.9 and 114.2 mW/m2, respectively. Case 3 with a set of guide walls where flow had an S type-like shape showed the highest power density. Based on the Morrill Dispersion Index (MDI) value of case 4, microbial activity would be enhanced since the reactor allows even distribution of substrate but the overflow occurrence would not guarantee stable performance. Therefore, case 3 could be an effective reactor type for MFC because of high electricity generation and stable performance.

Numerical study on the thermal-hydraulic safety of the fuel assembly in the Mast assembly (수치해석을 이용한 마스트집합체 내 핵연료 집합체의 열수력적 안전성 연구)

  • Kim, YoungSoo;Yun, ByongJo;Kim, HuiYung;Jeon, JaeYeong
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.149-163
    • /
    • 2015
  • In this study, we conducted study on the confirmation of thermal-hydraulic safety for Mast assembly with Computational Fluid Dynamics(CFD) analysis. Before performing the natural convection analysis for the Mast assembly by using CFD code, we validated the CFD code against two benchmark natural convection data for the evaluation of turbulence models and confirmation of its applicability to the natural convection flow. From the first benchmark test which was performed by Betts et al. in the simple rectangular channel, we selected standard k-omega turbulence model for natural convection. And then, calculation performance of CFD code was also investigated in the sub-channel of rod bundle by comparing with PNL(Pacific Northwest Laboratory) experimental data and prediction results by MATRA and Fluent 12.0 which were performed by Kwon et al.. Finally, we performed main natural convection analysis for fuel assembly inside the Mast assembly by using validated turbulence model. From the calculation, we observed stable natural circulation flow between the mast assembly and pool side and evaluated the thermal-hydraulic safety by calculating the departure from nucleate boiling ratio.

Performance assessment of Magnesium Bipolar Plates for Light Weight PEM Fuel Cell (PEM 연료전지 경량화를 위한 마그네슘 분리판의 성능평가)

  • Park, To-Soon;Lee, Dong-Woo;Kim, Kyung-Hwan;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1063-1069
    • /
    • 2012
  • In present paper, we used magnesium alloy having a lower density and higher electrical conductivity for bipolar plate to reduce the weight of PEM fuel cell. The silver was coated to prevent corrosion and form passivation film on the metal surface with sputtering. In acid proof evaluation for setting optimal coating conditions, the homogeneity of coating thickness was improved by coating with the thickness of 3 ${\mu}m$ which not indicated any micro cracks and the temperature $180^{\circ}C$. The performance test and evaluation based on the clamping pressure and channel depth to determine the configuration of bipolar plate for assembling single cell was implemented. And then we assembled single cell with this bipolar plate and implemented the performance test to ensure and compare the current-voltage performance followed as several factors such as coating or non-coating, the change of clamping pressure, the change of channel depth, etc. As these results, the maximum power density of single cell with the coated bipolar plate was 192 $mW/cm^2$ and it was confirmed that the power density per unit mass was better than existing metal bipolar plate.

A Study on Performance Improvement of PEMFC Using Wire Mesh Cell Structure (Wire Mesh 적용을 통한 PEMFC 성능 향상에 관한 연구)

  • Jin, Sang-Mun;Beack, Suk-Min;Heo, Seong-Il;Yang, Yoo-Chang;Kim, Sae-Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.295-300
    • /
    • 2010
  • Metal bipolar plate applied to Polymer Electrolyte Membrane Fuel Cell is getting most attractive due to their good feasibility of mass production and low cost. But it is one of the immediate causes of performance decline because it is difficult to reduce channel pitch of metal bipolar plate. In this study, mesh was inserted in between bipolar plate and GDL to obtain uniform contact pressure without reducing channel pitch. The section measuring and performance test were carried out to confirm the mesh structure distributes contact pressure equally in reacting area. The performance of 3 type mesh structures developed in this study were higher than the normal cell at all over the current range. Especially, it showed that the mesh cell performance was increased and pressure drop was decreased with diminishing mesh gap size. The Mesh structure was more sensitive to humidification and contact pressure change than the normal cell.

Experimental Study on the Edge Flame Stabilization and its Structure Nearby Quenching Limits in a High Temperature Channel (고온 채널 내부 에지화염의 소염 한계 영역에서의 화염 안정화 및 구조에 관한 실험적 연구)

  • Lee, Min-Jung;Kim, Nam-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • Edge flames have been interested as a basic structure that is concerned to flame stabilization and re-ignition of non-premixed flames. The edge flame consists of a lean premixed flame, a rich premixed flame, and a diffusion flame. In order to investigate fundamental structures of the edge flames at the conditions near the flammability limits, edge flames were stabilized within a heated narrow channel. Highly diluted partially premixed methane was used, and the flow rates of air and the partially premixed mixture were controlled. Various flame behaviors, including a transition between ordinary edge flames and premixed flames, were observed. Flame stabilization characteristics were examined as well. All flame stabilization conditions in this study showed a similar trend: characteristic time scales were inversely proportional to the equivalence ratio defined at the burner inlet. Finally, an interesting flame structure having a weak diffusion branch enveloped by a closed premixed branch was found near the flammability limits even in a fuel-air mixing layer. This structure was named as a "flame-drop" and the importance of this structure was first suggested.

A Study on Coolant Mixing in Multirod Bundle Subchannels

  • Cha, Jong-Hee;Cho, Moon-Haeng
    • Nuclear Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1970
  • A study was conducted on the coolant mixing between water flowing in two adjacent subchannels. Measurements were made of the quantity of mass transferred between a larger rectangular channel and a smaller triangular channel in a 19-rod fuel bundle under the conditions of single phase flow and air-water two-phase flow. The results of the experiments showed that the low mixing rate appears in single phase flow, and high mixing rate was measured in air-water two-phase flow Mixing rate decreases with the increasing of air void fraction during the air-water flow. It seems that the high mixing rate in the air-water flow was caused due to adequate agitation of the chaotic air void.

  • PDF