• Title/Summary/Keyword: fuel cell membrane

Search Result 1,041, Processing Time 0.029 seconds

A Study on Oxygen Diffusion Characteristics According to Changes in Flow Field Shape of Polymer Electrolyte Membrane Fuel Cell Metallic Bipolar Plate for Building (건물용 고분자 전해질 연료전지 금속분리판 유동장 형상 변화에 따른 산소 확산 특성에 대한 연구)

  • PARK, DONGHWAN;SOHN, YOUNG-JUN;CHOI, YOON-YOUNG;KIM, MINJIN;HONG, JONGSUP
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.245-255
    • /
    • 2021
  • Various studies about metallic bipolar plates have been conducted to improve fuel cell performance through flow field design optimization. These research works have been mainly focused on fuel cells for vehicle, but not fuel cells for building. In order to reduce the price and volume of fuel cell stacks for building, it is necessary to apply a metallic flow field, In this study, for a metallic flow field applied to a fuel cell for building, the effect of a change in the flow field shape on the performance of a polymer electrolyte membrane fuel cell was confirmed using a model and experiments with a down-sizing single cell. As a result, the flow field using a metal foam outperforms the channel type flow field because it has higher internal differential pressure and higher reactants velocity in gas diffusion layer, resulting in higher water removal and higher oxygen concentration in the catalyst layer than the channel type flow field. This study is expected to contribute to providing basic data for selecting the optimal flow field for the full stack of polymer electrolyte membrane fuel cells for buildings.

Analysis of Solid Oxide Fuel Cell/Oxy-fuel Combustion Power Generation System Using Oxygen Separation Technology (산소분리기술을 사용한 연료전지/순산소연소 발전시스템 해석)

  • Park, Sung-Ku;Kim, Tong-Seop;Sohn, Jeong-Lak;Lee, Young-Duk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-54
    • /
    • 2008
  • This study aims to devise and analyze a power generation system combining the solid oxide fuel cell and oxy-fuel combustion technology. The fuel cell operates at an elevated pressure, a constituting a SOFC/gas turbine hybrid system. Oxygen is extracted from the high pressure cathode exit gas using ion transport membrane technology and supplied to the oxy-fuel power system. The entire system generates much more power than the fuel cell only system due to increased fuel cell voltage and power addition from oxy-fuel system. More than one third of the power comes out of the oxy-fuel system. The system efficiency is also higher than that of the fuel cell only system. Recovering most of the generated carbon dioxide is major advantage of the system.

  • PDF

A Review of Strategies to Improve the Stability of Carbon-supported PtNi Octahedral for Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells

  • In Gyeom Kim;Sung Jong Yoo;Jin Young Kim;Hyun S. Park;So Young Lee;Bora Seo;Kwan-Young Lee;Jong Hyun Jang;Hee-Young Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.96-110
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells (PEMFCs) are green energy conversion devices, for which commercial markets have been established, owing to their application in fuel cell vehicles (FCVs). Development of cathode electrocatalysts, replacing commercial Pt/C, plays a crucial role in factors such as cost reduction, high performance, and durability in FCVs. PtNi octahedral catalysts are promising for oxygen reduction reactions owing to their significantly higher mass activity (10-15 times) than that of Pt/C; however, their application in membrane electrode assemblies (MEAs) is challenged by their low stability. To overcome this durability issue, various approaches, such as third-metal doping, composition control, halide treatment, formation of a Pt layer, annealing treatment, and size control, have been explored and have shown promising improvements in stability in rotating disk electrode (RDE) testing. In this review, we aimed to compare the features of each strategy in terms of enhancing stability by introducing a stability improvement factor for a direct and reasonable comparison. The limitations of each strategy for enhancing stability of PtNi octahedral are also described. This review can serve as a valuable guide for the development of strategies to enhance the durability of octahedral PtNi.

Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC) (일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해)

  • Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.

Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell (저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조)

  • Kang, Sangkyun;Park, Yong-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.

Micro Fuel Cells for the Portable Applications

  • Moon, Go-Young;Lee, Won-Ho
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Due to the increasing intelligence, the increasing connectivity, and always-on characteristics energy needs for the portable electronics cannot be managed by the state-of-art battery technology. Micro fuel cell fuelled by aqueous methanol is gaining lots of interest from the new energy storage developers since it has the potential to offer the longer operation time to the portable electronic devices. Although the technical barriers to the commercialization exit, it is expected that the micro fuel cell technology bring huge benefits to the current energy storage market once it matures. In the article, benefits, challenges and market players of the direct methanol fuel cell arena is briefly reviewed.

Performance Evaluation of a Plate-Type Membrane Humidifier for PEMFC (고분자전해질연료전지용 판형막가습기 성능 평가)

  • Kho, Back Kyun;Park, JongCheol;Han, In-Su;Shin, Hyun Khil;Hur, Tae Uk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.98.2-98.2
    • /
    • 2011
  • For optimal performance of a proton exchange membrane fuel cell (PEMFC), the membrane electrode assembly (MEA) requires hydration, and the membrane's conductivity depends on water content. A humidifier is required to ensure that the reactant gas, usually hydrogen and air, is hydrated before entering the fuel cell. Dry membrane operation or improper hydration causes performance degradation. Typically, the humidification of a fuel cell is carried out by means of an internal or external humidifier. A membrane humidifier is applied to the external humidification of transportation or residential power generation fuel cell due to its convenience and high performance. In this study, The experiments were constructed with a plate-type membrane humidifier in terms of geometric parameters and operating parameters. The results show that the temperature and pressure, the channel length, the membrane thickness and gas flow rate are critical parameters affecting the performance of the humidifier.

  • PDF

Investigation of Water Droplet Behaviour on GDL Surface and in the Air Flow Channel of a PEM Fuel Cell under Flooding Conditions (플러딩 조건 하에서의 고분자전해질형 연료전지 GDL 표면과 공기극 유로 채널에서의 물방울 유동 특성 고찰)

  • kim, Hansang;Min, Kyoungdoug
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.476-483
    • /
    • 2012
  • Proper water management is crucial for the efficient operation of polymer electrolyte membrane (PEM) fuel cell. Especially, for automotive applications, A novel water management that can avoid both membrane dry-out and flooding is a very important task to achieve good performance and efficiency of PEM fuel cells. The aim of this study is to investigate the liquid water behavior on the gas diffusion layer (GDL) surface and in the cathode flow channel of a PEM unit fuel cell under flooding conditions. For this purpose, a transparent unit fuel cell is devised and fabricated by modifying the conventional PEM fuel cell design. The results of water droplet behavior under flooding conditions are mainly presented. The water distributions in the cathode flow channels with cell operating voltage are also compared and analyzed. Through this work, it is expected that the data obtained from this fundamental study can be effectively used to establish the basic water management strategy in terms of water removal from the flow channels in a PEM fuel cell stack.

Experimental studies on Flooding in the PEM Fuel Cell at various RH (상대습도 변화에 따른 PEM Fuel Cell 내에서의 플러딩에 관한 실험적 연구)

  • Kim, Kyoung-Rock;Han, Seong-Ho;Aim, Deuk-Kuen;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2385-2389
    • /
    • 2008
  • This is the experimental research that tries to explain a variety of RH is how to affect the cell performance and the flooding phenomenon of proton exchange membrane fuel cell (PEMFC). A value of PH changes to 0%, 50% and 90% as its variation, either stoichiometric flow rate changes to 1.5, 2 and 4. Into the comparison between theoretical and experimental value, this study analyzes that a variety of PH is how 10 affect flooding in the cathode of the proton exchange membrane fuel cell. The effect of air stoichiometry, air humidity and different flow fields are also discussed in this paper This study has accomplished the measurement of performance as the variety of RH in the cathode of proton exchange membrane fuel cell, moreover it has recorded the visualization of flooding in the cathode with a high-speed micro camera.

  • PDF