• Title/Summary/Keyword: fuel behavior

Search Result 1,182, Processing Time 0.027 seconds

Evaluation of the Corrosion Behavior of the Aluminum Cladding in the KMRR Fuel (KMRR 핵연료 알루미늄 피복재의 부식 거동 평가)

  • Lee, Chan-Bock;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.526-535
    • /
    • 1994
  • For the evaluation of the corrosion behavior of the aluminum cladding in the KMRR(Korea Multipurpose Research Reactor) fuel, a modified Griess correlation was derived by introducing a heat flux factor derived from the comparison of the measured in-reactor corrosion data with the prediction of the Griess correlation. As a design criterion on the corrosion to maintain the KMRR fuel integrity, prevention of the oxide spallation was conservatively selected, which is conservatively assumed to occur when the temperature difference across the oxide layer exceeds 114$^{\circ}C$. A bounding power history of the KMRR fuel was determined by examining all the power histories of the KMRR fuel from cycle 1 to equilibrium cycle, and used to predict the maximum possible corrosion. Results of the corrosion prediction of the KMRR fuel with the bounding power history showed that the maximum local thickness of the oxide layer would be below 50$\mu$m and the design criterion on the oxide spallation would be satisfied with a factor of two margin. Therefore, it can be said that corrosion of the cladding will not impair the integrity of the KMRR fuel. Nevertheless, the applicability of the modified Griess correlation to the KMRR needs to be further verified through the KMRR fuel corrosion surveillance.

  • PDF

Enthalpy Rise for Pressure Loss of Spacer Grids of Dual Coolant Fuel (이중냉각연료에서 지지격자의 압력손실에 대한 엔탈피 증가)

  • Chun, Kun-Ho;Chun, Tae-Hyun;Shin, Chang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3473-3478
    • /
    • 2007
  • A dual side cooling annular fuel having internal and external coolant channels has many advantages basically due to low fuel temperature and high DNBR margin, which can make a significant increase of core power density possible. So recently a 12x12 square annular fuel array was proposed for the fuel assembly to be reloaded without structural interference with operating reactors of OPR-1000s. Even through the inherent potential of the annular fuel on the high power density, it may be seriously eroded in the case of a severe unbalanced mass flux split to the internal and external channels in standpoint of DNB. Mass flux split is determined pressure drop characteristics between inner and outer channels. The spacer grids binding fuel array influence greatly the pressure drop in outer channels and the mass flux split. As an important factor of DNB behavior, the enthalpy differences at both channel exits were evaluated using the mass flux splits.

  • PDF

Intake Valve Temperature Effect on the Mixture Preparation in a SI Engine During Warm-up

  • 신영기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.51-66
    • /
    • 1997
  • A heat transfer model of the intake valve in a spark ignition engine is presented, which is calibrated with a number of the valve temperature profiles measured during engine warm-up for the gaseous fuel(propane). The valve is divided into four identical elements for which the assumption of lumped thermal mass is applied. The calibration is made so that the difference between the measued and simulated valve temperatures becomes minimal. Then the model is applied to the cases of the liquid fuel(indolene) to estimate the amount of the liquid fuel vaporized from the intake valve by assuming that fuel evaporation accounts for the deficit of the heat balance budget. The results of the model show quantitative contribution of each heat transfer source to the heat balance. The behavior of the calculated mass fraction of the fuel vaporized from the intake valve explains how the liquid fuel evaporate during engine warm-up. The mass fraction at warmed-up condition is closely related with the fraction directly targeted on the valve back by the fuel spray geometry.

  • PDF

Development of Structural Analysis Modeling for KALIMER Fuel Rod

  • Kang, Hee-Young;Cheol Nam;Woan Hwang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.175-180
    • /
    • 1998
  • The U-Zr metallic alloy with low swelling HT9 cladding is the candidate for the KALIMER fuel rod. The fuel rod should be able to maintain the structural integrity during its lifetime in the reactor. In a typical metallic fuel rod, load is mainly applied by internal gas pressure, and the deformation is primarily caused by creep of the cladding. The three-dimensional FEM modelling of a fuel rod is important to predict the structural behavior in concept design stage. Using the ANSYS code, the 3-D structure analyses were performed for various configuration, element and loads. It has been shown that the present analysis model properly evaluate the structural integrity of fuel rod. The present analysis results show that the fuel rod is expected to maintain its structural integrity during normal operation.

  • PDF

An Experimental Study on Spray Characteristics of Crude Palm Oil (비 정제 팜유에 대한 분무특성의 실험적 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.158-162
    • /
    • 2010
  • The effect of fuel injection characteristics on engine performance has been known for improving fuel economy and emission reduction. In this study, the spray characteristics of crude palm oil blended fuel with conventional diesel fuel was investigated. The experiments were performed to evaluate the effect of crude palm oil blending ratio and injection pressure on the spray behavior. The droplet size of injected fuel was analyzed through laser diffraction particle analyzer (LDPA). Also, spray atomization characteristics were investigated in terms of Sauter mean diameter (SMD) and droplet distribution at various injection conditions. Fuel containing crude palm oil has different spray pattern on account of the high viscosity. Through those experimental results, we found that the increase of blending ratio made droplet size larger, SMD of biodiesel 100% was increased 30.2% than that of diesel fuel 100% under injection pressure of 60 MPa.

Sensitivity Analysis using TPA for Slosh Noise of Fuel Tank (TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석)

  • Cha, Hee-Bum;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.356-360
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

  • PDF

Characteristics of Vertically Injected Buoyant Jet of Highly Diluted Propane (과다 희석된 프로판제트의 상향분사시 부력에 의한 유동특성)

  • Chun Kang Woo;Kim Junhong;Won Sang Hee;Chung Suk Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.529-532
    • /
    • 2002
  • In coflow jets with relatively large size nozzle and low fuel jet velocity, the buoyancy effect arises from the density difference between fuel and air streams. The present study investigated the behavior of such a buoyant cold Jet both numerically and experimentally, especially when the fuel stream has higher density than air. It has been demonstrated that the cold jet has a circular cone shape since upwardly injected fuel jet decelerates and forms a stagnation region, when the fuel jet was composed of propane highly diluted with nitrogen. When the fuel was moderately diluted, numerical results showed the Kelvin-Helmholtz type instability along the mixing layer of the jet. The stagnation height increases nonlihearly with fuel jet velocity with the power of approximately 1.64.

  • PDF

Sensitivity Analysis Using TPA for Slosh Noise of Fuel Tank (TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석)

  • Cha, Hee-Bum;Yoon, Seong-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.766-770
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

Experimental Study on the Flame Behavior and the NOx Emission Characteristics of Low Calorific Value Gas Fuel (저 발열량 가스 연료의 화염거동 및 NOx 발생 특성에 관한 실험적 연구)

  • Kim, Yong-Chul;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.89-93
    • /
    • 1999
  • Experimental studies are conducted to investigate the flame stability and the thermal/fuel NOx formation characteristics of the low calorific value(LCV) gas fuel. Synthetic LCV fuel gas is produced through mixing carbon monoxide, hydrogen, nitrogen and ammonia on the basis that the thermal input of the syngas fuel into a burner is identical to that of natural gas, and then the syngas mixture is fed to and burnt with air on flat flame burner. Flame behaviors are observed to identify flame instability due to blow-off or flash-back when burning the LCV fuel gas at various equivalence ratio conditions. Measurements of NOx in combustion gas are made for comparing thermal and fuel NOx emissions from the LCV syngas combustion with those of the natural gas one, and for analyzing ammonia to NOx conversion mechanism. In addition, the nitrogen dilution of the LCV syngas is preliminarily attempted as a NOx reduction technique.

  • PDF

Modeling of central void formation in LWR fuel pellets due to high-temperature restructuring

  • Khvostov, Grigori
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1190-1197
    • /
    • 2018
  • Analysis of the GRSW-A model coupled into the FALCON code is extended by simulation of central void formation in fuel pellets due to high-temperature fuel restructuring. The extended calculation is verified against published, well-known experimental data. Good agreement with the data for a central void diameter in pellets of the rod irradiated in an Experimental Breeder Reactor is shown. The new calculation methodology is employed in comparative analysis of modern BWR fuel behavior under assumed high-power operation. The initial fuel porosity is shown to have a major effect on the predicted central void diameter during the operation in question. Discernible effects of a central void on peak fuel temperature and Pellet-Cladding Mechanical Interaction (PCMI) during a simulated power ramp are shown. A mitigating effect on PCMI is largely attributed to the additional free volume in the pellets into which the fuel can creep due to internal compressive stresses during a power ramp.