• Title/Summary/Keyword: fuel behavior

Search Result 1,182, Processing Time 0.033 seconds

A Study for burning behavior of Hydro-Reactive metal fuel using Ultrasound (초음파를 이용한 해수반응 연료의 연소거동 고찰 연구)

  • Seo, Mu-Kyung;Kang, To;Cho, Seung-Wan;Kim, Hak-Joon;Song, Sung-Jin;Kim, Jun-Hyung;Yoo, Ji-Chang;Jung, Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.451-454
    • /
    • 2011
  • Hydro-Reactive metal Fuel (HRF) which has more fuel than general solid propellant reducing oxidizing agent is suitable for ultrahigh speed rocket motor in the water. However, burning rate of HRF has not been studied yet. Through the earlier studies, we established ultrasonics measurement system measuring burning rate of solid propellant as a function of pressure in a single test and verified its reliability. In this paper, we will measure burning rate of HRF using ultrasound with previous development measurement system.

  • PDF

Effect of Pyrolyzing Fuel Position on Ignition and Flame Propagation in a Cylindrical Enclosure (원형공간내 열분해 연료의 위치변화에 따른 점화 및 화염전파 영향)

  • Han, Jo-Yeong;Kim, Jeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.133-142
    • /
    • 2001
  • Investigation on ignition and flame propagation of pyrolyzing fuel in a cylindrical enclosure is accomplished. The pyrolyzing fuel of cylindrical shape is located in an outer cylinder sustained at high-temperature. Due to gravity, the buoyancy motion is inevitably incurred in the enclosure and this affects the flame initiation and propagation behavior. The radiative heat transfer plays an important role since a high temperature difference is involved in the problem. Therefore in all cases presented here, the intrinsic radiation effects are considered. Numerical studies have been performed over various governing parameters, such as Grashof number, overheat ratio, and vertical fuel eccentricity. Depending on the Grashof number, the flame behavior is found to be totally different: a separated visible flame appears as the Grashof number reaches 10(sup)7. The location of flame onset is also affected by the vertical eccentricity of inner pyrolyzing fuel as well as thermal conditions applied.

CORROSION BEHAVIOR OF NI-BASE ALLOYS IN SUPERCRITICAL WATER

  • Zhang, Qiang;Tang, Rui;Li, Cong;Luo, Xin;Long, Chongsheng;Yin, Kaiju
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.107-112
    • /
    • 2009
  • Corrosion of nickel-base alloys (Hastelloy C-276, Inconel 625, and Inconel X-750) in $500^{\circ}C$, 25MPa supercritical water (with 10 wppb oxygen) was investigated to evaluate the suitability of these alloys for use in supercritical water reactors. Oxide scales formed on the samples were characterized by gravimetry, scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicate that, during the 1000h exposure, a dense spinel oxide layer, mainly consisting of a fine Cr-rich inner layer ($NiCr_{2}O_{4}$) underneath a coarse Fe-rich outer layer ($NiFe_{2}O_{4}$), developed on each alloy. Besides general corrosion, nodular corrosion occurred on alloy 625 possibly resulting from local attack of ${\gamma}$" clusters in the matrix. The mass gains for all alloys were small, while alloy X -750 exhibited the highest oxidation rate, probably due to the absence of Mo.

Unsteady Intermittent Spray Characteristics of PEI Gasoline Injector (PEI용 가솔린 인젝터의 비정상 간헐 분무 특성)

  • Kim Beomjun;Lee Jaiho;Cho Daejin;Yoon Suckju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.64-74
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from two-holes two-sprays type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels (디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구)

  • Park, Sewon;Park, Su Han;Park, Sungwook;Chon, Mun Soo;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.

CORROSION BEHAVIOR OF AUSTENITIC AND FERRITIC STEELS IN SUPERCRITICAL WATER

  • Luo, Xin;Tang, Rui;Long, Chongsheng;Miao, Zhi;Peng, Qian;Li, Cong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.147-154
    • /
    • 2008
  • The general corrosion behavior of austenitic and ferritic steels(316L, 304, N controlled 304L, and 410) in supercritical water is investigated in this paper. After exposure to deaerated supercritical water at $480^{\circ}C$/25 MPa for up to 500 h, the four steels studied were characterized using gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDS), X-ray photoelectron spectroscopy(XPS), and X-ray diffraction(XRD). The results show that the 316L steel with a higher Cr and Ni content has the best corrosion-resistance performance among the steels tested. In addition to the oxide layer mixed with $Fe_{3}O_{4}$ and $(Fe,Cr)_{3}O_{4}$ that formed on all the samples, a $Fe_{3}O_{4}$ loose outer layer was observed on the 410 steel. The corrosion mechanism of stainless steels in supercritical water is discussed based on the above results.

Development of a Mechanistic Fission Gas Release Model for LWR $UO_2$ Fuel Under Steady-State Conditions

  • Koo, Yang-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.229-246
    • /
    • 1996
  • A mechanistic model has been developed to predict the release behavior of fission gas during steady-state irradiation of LWR UO$_2$ fuel. Under the assumption that UO$_2$ grain surface is composed of fourteen identical circular faces and grain edge bubble can be represented by a triangulated tube around the circumference of three circular grain faces, it introduces the concept of continuous formation of open grain edges tunnels that is proportional to grain edge swelling. In addition, it takes into account the interaction between the gas release from matrix to grain boundary and the reintroduction of gas atoms into the matrix by the irradiation-induced re-solution of grain face bubbles. It also treats analytically the behavior of intragranular, intergranular, and grain edge bubbles under the assumption that both intragranular and intergranular bubbles are uniform in both radius and number density. Comparison of the present model with experimental data shows that the model's prediction produces reasonable agreement for fuel with centerline temperatures of 1000 to 140$0^{\circ}C$, wide scatter band for fuel with centerline temperatures lower than 100$0^{\circ}C$, and underprediction for fuel with centerline temperatures higher than 140$0^{\circ}C$.

  • PDF

A Study on Emulsified Fuel Conditions and the Behavior of Diesel Engine Injection System based on Data Analysis (데이터 분석 기반 유화연료 조건과 디젤엔진 분사시스템 거동에 관한 연구)

  • Kim, Min-Seop;Ejike, Akpudo Ugochukwu;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.80-88
    • /
    • 2021
  • The behavior of the injection system was determined through FFT and PSD analysis of the pressure data of the common rail, and when the diesel fuel is mixed with water, the pressure data of the common rail, depending on the water content and engine rotation speed, represent a different frequency component distribution. Recently, a theory has been suggested that mixing diesel fuel with water controls engine overheating, fuel efficiency, NOx, CO, etc., but if water content exceeds 10%, it can have a fatal adverse effect on the engine's injection system. In the future, it is necessary to promote fault diagnosis and prediction studies of diesel engines using FFT and PSD results from common rail pressure data.

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin;Kong, Xiangzhe;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1575-1588
    • /
    • 2019
  • Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

Analysis of Dynamic Characteristics of 20 kW Hydrogen Fuel Cell System Based on AMESet (AMESet 기반 20 kW급 수소 연료전지 시스템 동특성 모델 해석)

  • JONGBIN WOO;YOUNGHYEON KIM;SANGSEOK YU
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.465-477
    • /
    • 2023
  • In proton exchange membrane fuel cell (PEMFC), proper thermal management of the stack and moisture generation by electrochemical reactions significantly affect fuel cell performance. In this study, the PEMFC dynamic characteristic model was developed through Simcenter AMESim, a development program. In addition, the developed model aims to understand the thermal resin balance of the stack and performance characteristics for input loads. The developed model applies the thermal management model of the stack and the moisture content and permeability model to simulate voltage loss and stack thermal behavior precisely. This study extended the C based AMESet (adaptive modeling environment submodeling tool) to simulate electrochemical reactions inside the stack. Fuel cell model of AMESet was liberalized with AMESim and then integrated with the balance of plant (BOP) model and analyzed. And It is intended to be used in component design through BOP analysis. The resistance loss of the stack and thermal behavior characteristics were predicted, and the impact of stack performance and efficiency was evaluated.