• Title/Summary/Keyword: front grid

Search Result 140, Processing Time 0.025 seconds

Electroless plating of buried contact solar cell (전극함몰형 태양전지의 무전해도금)

  • Dong Seop Kim;Eun Chel Cho;Soo Hong Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.88-97
    • /
    • 1996
  • The metallization is the key to determining cell costs, cell performance, and system reliability. Screen printing technology suffers from several limitations affecting mainly the front grid. The buried contact solar cell (BCSC) was specifically desinged to be compatible with low cost, mass production techniques and avoid the conventional metallization problem. By using electroless plating technique, we performed this metallization inexpensively and reliably. This paper presents the details of the optimization procedure of metallization schemes on laser grooved cell surfaces. Commercially available Ni, Cu and Ag plating solutions were applied for the cell metallization. The application of those solutions on the buried contact front metallization has resulted in an cell efficiency of 18.8%. The cell parameters are an open circuit voltage of 651 mV, short circuit current density of 37.1 mA/$\textrm{cm}^2$, and fill factor of 77.8 %. The efficiency of over 18 % was achieved in the above 90% of the batch.

  • PDF

Application of a Selective Emitter Structure for Ni/Cu Plating Metallization Crystalline Silicon Solar Cells (Selective Emitter 구조를 적용한 Ni/Cu Plating 전극 결정질 실리콘 태양전지)

  • Kim, Min-Jeong;Lee, Jae-Doo;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.575-579
    • /
    • 2010
  • The technologies of Ni/Cu plating contact is attributed to the reduced series resistance caused by a better contact conductivity of Ni with Si and the subsequent electroplating of Cu on Ni. The ability to pattern narrower grid lines for reduced light shading was combined with the lower resistance of a metal silicide contact and an improved conductivity of the plated deposit. This improves the FF (fill factor) as the series resistance is reduced. This is very much requried in the case of low concentrator solar cells in which the series resistance is one of the important and dominant parameter that affect the cell performance. A Selective emitter structure with highly dopeds regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing In this paper the formation of a selective emitter, and the nickel silicide seed layer at the front side metallization of silicon cells is considered. After generating the nickel seed layer the contacts were thickened by Cu LIP (light induced plating) and by the formation of a plated Ni/Cu two step metallization on front contacts. In fabricating a Ni/Cu plating metallization cell with a selective emitter structure it has been shown that the cell efficiency can be increased by at least 0.2%.

Study on 2×2 Subarray Antenna for Implementation of VHF Band Active Electronically Scanned Array (VHF 대역 능동 위상 배열안테나 구현을 위한 2×2 부배열 안테나 설계에 관한 연구)

  • Kim, Sungpeel;Han, Junyong;Jang, Younhui;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.473-476
    • /
    • 2018
  • Herein, a $2{\times}2$ subarray antenna is designed to implement a VHF band active electronically scanned array. The Yagi-Uda antenna is used as a radiating element. The bandwidth enhancement and miniaturization of the Yagi-Uda antenna are achieved by optimizing the diameter of a driven element and the length of a director. In addition, the grid reflector is utilized to improve the front-to-back ratio(FBR) and to reduce both the wind resistance and overall system weight. The fabricated $2{\times}2$ subarray antenna fully covers the VHF target band($0.98{\sim}1.02f_c$). The measured maximum gain is 10.61 dBi and the FBR is larger than 26 dB.

Effect of Change of Numerical Parameters on Outflow Characteristics in the Linear Muskingum-Cunge Method (선형 Muskingum-Cunge 법에서의 수치적 인자의 변화가 유출특성에 미치는 영향)

  • 김진수
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.139-150
    • /
    • 1996
  • This paper presents the effect of numerical parameters, such as grid size and grid ratio, on the outflow hydrograph of a unit-width plane in the linear Muskingum-Cunge method. The numerical results depend on Courant number C and cell Reynolds number D, two physically and numerically meaningful parameters. As C approache 1 and D increases, the numerical dispersion-relating oscillations are difficult to occur. The numerical oscillations occur in the front of a propagating wave for C < 1, while smaller oscillations occur behind the wave for C > 1 due to the numerical diffusion effect. For a plane with a small value of characteristic reach length L (e.g., a steep plane), the numerical solution of the Muskingum-Cunge method is similar to that of the kinematic wave method, which shows no wave attenuation. However, for a plane with a large value of L (e.g., a mild plane), the Muskingum-Cunge method leads to the diffusion waves which are essentially independent of the Courant number. Accordingly, the Muskingum-Cunge method will be suited for the routing of the catchment with relatively mild slopes.

  • PDF

The Earth Pressure Distribution of Crib Wall (Crib Wall의 토압분포)

  • Oh, Sewook;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.41-48
    • /
    • 2006
  • Crib wall is one of the segmental grid retaining walls using headers and stretchers to establish the framework of the wall. In this method, grids formed by the intersection of headers and stretchers are generally filled with the gravel to maintain the weight of the wall. Therefore, the construction can be carried out with higher speed and much economically when compared with the concrete retaining wall. Furthermore, it has high drain capacity, and environmentally friendly aspects also have been pointed out because the possibility of the planting at the front of the wall. However, in the crib wall method, the relative movement between the individual headers and stretchers was generally recognized, and stress redistribution in the gravel filling was also observed when subjected to the external loading and self-weight of filling. Therefore, it has been thought that the distribution of the earth pressure in the crib wall system differ from that of the concrete retaining wall. In this study, the surcharge tests using the scaled model crib wall was carried out to observe the distribution of the earth pressure in the segmental grid retaining wall. The earth pressure was measured in the six specified height of wall, and the distribution of the pressure was analyzed. Furthermore, the earth pressure by computation or by the test using the concrete retaining wall was also considered to make comparison.

  • PDF

The Improvement and Evaluation of the Flight Suit Pattern to Enhance Movement (동작성 향상을 위한 비행복의 패턴개선 및 평가)

  • Jeon, Eun-Jin;Park, Sei-Kwon;You, Hee-Cheon;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.12 no.5
    • /
    • pp.633-641
    • /
    • 2010
  • The purpose of this study is to evaluate a new flight suit in bilateral ways; subjectively and objectively in the improvements of comfort and mobility. Seven healthy males at the age of twenties volunteered in this wearing test. They were over 177 cm in height and 92-95 cm in chest circumference, which satisfies the M95 Special' size described in the Korean Military Specifications and Standards. The subjective satisfaction was evaluated according to the criteria of ease of donning and doffing, fitness of wear, mobility, space between cloth and body, convenience in using restroom. Subjective satisfaction evaluation says that the best improvement of movement are neck circumference, chest breadth, armscye circumference, waist back length, crotch length, crotch height and body rise. According to the evaluation, improvements of mobility were conspicuous especially in parts of body like neck, breast, waist, back, and arms. When evaluating objective satisfaction, we measured a angle difference in a prescribed standard-grid on a photograph that picked up while the subject performed each motion in front of 10 cm-interval grid. As a result, the motion that had angle difference above 5 degrees were arm stretching and standing on single leg holding at forward or at his side. Bending necks and waist, crouching also had angle difference of over 5 degrees. The improvements are discussed from the viewpoint that the increased ease in parts of armscye circumference and crotch in new flight suit pattern.

The Stones of Seokguram Speak: Floor Plan and Wall Design of Seokbulsa Grotto (석굴암의 돌은 말한다: 석불사 석굴의 건축 평면과 벽면 설계)

  • Yoon, Chae-Shin
    • Journal of architectural history
    • /
    • v.29 no.1
    • /
    • pp.21-37
    • /
    • 2020
  • The purpose of this paper is to reconstruct the original floor plan and wall design of Seokbulsa Grotto in Kyungju; commonly known as 'Seokguram'. The paper presents an array of dimensional studies of the existing Seokguram to examine its architectural form, and infers the original floor plan and wall design of Seokbulsa Grotto. Seokbulsa Grotto is designed as a system of 'coherent modules' and was constructed using the dry stone method, which interlocks large stone modules into a whole that becomes the load-bearing structure itself. The design principles governing Seokbulsa Grotto are the spatial axis of symmetry, modular coordination, and the layout grid of a quarter Tang-Ruler(TR: 唐尺). Dimensional studies were conducted with these governing principles in mind and concludes the following about the original floor plan design. In the main chamber, Ansang-stone's radius is 12 TR, and Flagstone's radius is 12¼ TR. In the front chamber, the width between the two Ansang-stones facing each other is 22 TR and the longitudinal space depth is 12 TR, while the width between the two Flagstones facing each other is 22½ TR and Flagstone's depth is 12 TR. In the passageway, the width between the two Ansang-stones facing each other is 11½ TR and longitudinal space depth is 9 TR, while the width between the two Flagstones facing each other is 12 TR and Flagstone's depth is 7¾ TR. The distance from the center to the entrance line of the main chamber is 10½ TR. Therefore, the total longitudinal length of the Grotto is 43½ TR at the level of the Ansang-stones, and 44 TR at the level of the Flagstones.

High Efficiency Solar Cell(I)-Fabrication and Characteristics of $N^+PP^+$ Cells (고효율 태양전지(I)-$N^+PP^+$ 전지의 제조 및 특성)

  • 강진영;안병태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 1981
  • Boron was predeposited into p (100) Si wafer at 94$0^{\circ}C$ for 60minutes to make the back surface field. High tempreature diffusion process at 1145$^{\circ}C$ for 3 hours was immediately followed without removing boron glass to obtain high surface concentration Back boron was annealed at 110$0^{\circ}C$ for 40minutes after boron glass was removed. N+ layer was formed by predepositing with POCI3 source at 90$0^{\circ}C$ for 7~15 minutes and annealed at 80$0^{\circ}C$ for 60min1es under dry Of ambient. The triple metal layers were made by evaporating Ti, Pd, Ag in that order onto front and back of diffused wafer to form the front grid and back electrode respectively. Silver was electroplated on front and back to increase the metal thickness form 1~2$\mu$m to 3~4$\mu$m and the metal electrodes are alloyed in N2 /H2 ambient at 55$0^{\circ}C$ and followed by silicon nitride antireflection film deposition process. Under artificial illumination of 100mW/$\textrm{cm}^2$ fabricated N+PP+ cells showed typically the open circuit voltage of 0.59V and short circuit current of 103 mA with fill factor of 0.80 from the whole cell area of 3.36$\textrm{cm}^2$. These numbers can be used to get the actual total area(active area) conversion efficiency of 14.4%(16.2%) which has been improved from the provious N+P cell with 11% total area efficiency by adding P+ back.

  • PDF

PA study on selective emitter structure and Ni/Cu plating metallization for high efficiency crystalline silicon solar cells (결정질 실리콘 태양전지의 고효율 화를 위한 Selective emitter 구조 및 Ni/Cu plating 전극 구조 적용에 관한 연구)

  • Kim, Minjeong;Lee, Jaedoo;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.91.2-91.2
    • /
    • 2010
  • The use of plated front contact for metallization of silicon solar cell may alternative technologies as a screen printed and silver paste contact. This technologies should allow the formation of contact with low contact resistivity a high line conductivity and also reduction of shading losses. The better performance of Ni/Cu contacts is attributed to the reduced series resistance due to better contact conductivity of Ni with Si and subsequent electroplating of Cu on Ni. The ability to pattern narrower grid lines for reduced light shading combined with the lower resistance of a metal silicide contact and improved conductivity of plated deposit. This improves the FF as the series resistance is deduced. This is very much required in the case of low concentrator solar cells in which the series resistance is one of the important and dominant parameter that affect the cell performance. A selective emitter structure with highly dopes regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing. This paper using selective emitter structure technique, fabricated Ni/Cu plating metallization cell with a cell efficiency of 17.19%.

  • PDF

Prediction of Strong Ground Motion in Moderate-Seismicity Regions Using Deterministic Earthquake Scenarios

  • Kang, Tae-Seob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.25-31
    • /
    • 2007
  • For areas such as the Korean Peninsula, which have moderate seismic activity but no available records of strong ground motion, synthetic seismograms can be used to evaluate ground motion without waiting for a strong earthquake. Such seismograms represent the estimated ground motions expected from a set of possible earthquake scenarios. Local site effects are especially important in assessing the seismic hazard and possible ground motion scenarios for a specific fault. The earthquake source and rupture dynamics can be described as a two-step process of rupture initiation and front propagation controlled by a frictional sliding mechanism. The seismic wavefield propagates through heterogeneous geological media and finally undergoes near-surface modulations such as amplification or deamplification. This is a complex system in which various scales of physical phenomena are integrated. A unified approach incorporates multi-scale problems of dynamic rupture, radiated wave propagation, and site effects into an all-in-one model using a three-dimensional, fourth-order, staggered-grid, finite-difference method. The method explains strong ground motions as products of complex systems that can be modified according to a variety of fine-scale rupture scenarios and friction models. A series of such deterministic earthquake scenarios can shed light on the kind of damage that would result and where it would be located.