• 제목/요약/키워드: friction pendulum

검색결과 112건 처리시간 0.031초

진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가 (Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test)

  • 전법규;장성진;김남식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가 (Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test)

  • 전법규;장성진;김남식
    • 한국소음진동공학회논문집
    • /
    • 제21권7호
    • /
    • pp.599-608
    • /
    • 2011
  • FPS(friction pendulum system) is an isolation system which is possible to isolate structures from earthquake by pendulum characteristic. Natural frequencies of the structures could be determined by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(cone-type friction pendulum bearing system) was developed for controlling the acceleration and displacement of structure by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, superstructures on CFPBS could be isolated from earthquake. In this study, seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

마찰진자를 이용한 면진장치의 원전 주 제어실 적용에 관한 연구 (A Study on the Application of Friction Pendulum System in Main Control Room of Nuclear Power Plant)

  • 김우범;이경진
    • 한국강구조학회 논문집
    • /
    • 제17권4호통권77호
    • /
    • pp.407-417
    • /
    • 2005
  • 원전 주 제어실에 마찰진자 베어링을 이용한 면진시스템을 적용하기 위한 해석 및 실험적 연구를 수행하였다. 마찰진자 베어링을 제작하였으며 동적 물성치 시험을 통하여 이의 성능을 평가하였다. 강재 격자 바닥판, 캐비넷, 4개의 마찰진자로 구성된 주제어실의 부분 면진시스템 모형을 제작하고 진동시험대 실험을 수행함으로써 마찰진자 시스템의 원전 적용성을 평가하였다. 진동대 실험에서는 원전 스펙트럼을 이용한 인공지진파를 사용하였으며 마찰진자 위치 점의 층응답 스펙트럼의 변화를 통하여 면진 성능을 평가하였다. 향후 실험을 통하여 구현하기 어려운 실험변수의 영향을 검토하기 위하여 수치해석 모형을 작성하여 실험 결과 비교 검증하였다.

트라이볼로지 특성에 미치는 윤활제의 영향 (The Effect of Lubricants on the Tribological Characteristics)

  • 김중현
    • Tribology and Lubricants
    • /
    • 제19권6호
    • /
    • pp.365-369
    • /
    • 2003
  • This paper presents an experiment of the characteristics of lubricating oils for refrigerating and air conditioning. We investgate influences of lubricating oils and additives on friction and wear by reciprocating type and pendulum type friction testers. The result shows that polyolesters have excellent friction characteristics and poor effect of additives. In contrast, polyvinylethers gave higher coefficient of friction, low wear amount and good effect of additives. We can see good relationship between the coefficients of friction in recipricating type and pendulum type friction testers.

Seismic response analysis of isolated offshore bridge with friction sliding bearings

  • Wang, Baofu;Han, Qiang;Jia, Junfeng
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.641-654
    • /
    • 2019
  • This paper investigates the seismic response of a typical non-navigable continuous girder bridge isolated with friction sliding bearings of the Hong Kong-Zhuhai-Macao link projects in China. The effectiveness of the friction pendulum system (FPS) and accuracy of the numerical model were evaluated by a 1/20 scaled bridge model using shaking table tests. Based on the hysteretic properties of friction pendulum system (FPS), double concave friction pendulum (DCFP), and triple friction pendulum system (TFPS), seismic response analyses of isolated bridges with the three sliding-type bearings are systematically carried out considering soil-pile interaction under offshore soft clay conditions. The fast nonlinear analysis (FNA) method and response spectrum are employed to investigate the seismic response of isolated offshore bridge structures. The numerical results show that the implementation of the three sliding-type bearings effectively reduce the base shear and bending moment of the reinforced concrete pier, at the cost of increasing the absolute displacement of the bridge superstructure. Furthermore, the TFPS and DCFP bearings show better isolation effect than FPS bearing for the example continuous girder bridge.

The effects of peak ground velocity of near-field ground motions on the seismic responses of base-isolated structures mounted on friction bearings

  • Tajammolian, H.;Khoshnoudian, F.;Talaei, S.;Loghman, V.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1259-1281
    • /
    • 2014
  • This research has been conducted in order to investigate the effects of peak ground velocity (PGV) of near-field earthquakes on base-isolated structures mounted on Single Friction Pendulum (SFP), Double Concave Friction Pendulum (DCFP) and Triple Concave Friction Pendulum (TCFP) bearings. Seismic responses of base-isolated structures subjected to simplified near field pulses including the forward directivity and the fling step pulses are considered in this study. Behaviour of a two dimensional single story structure mounting on SFP, DCFP and TCFP isolators investigated employing a variety range of isolators and the velocity (PGV) of the forward directivity and the fling step pulses as the main variables of the near field earthquakes. The maximum isolator displacement and base shear are selected as main seismic responses. Peak seismic responses of different isolator types are compared to emphasize the efficiency of each one under near field earthquakes. It is demonstrated that rising the PGVs increases the isolator displacement and base shear of structure. The effects of the forward directivity are greater than the fling step pulses. Furthermore, TCFP isolator is more effective to control the near field effects than the other friction pendulum isolators are. This efficiency is more significant in pulses with longer period and greater PGVs.

회귀분석을 통한 역진자 시스템의 마찰력 측정에 관한 연구 (A Study on Friction Measurement of an Inverted Pendulum System using the Regression Analysis)

  • 박경윤;박덕기;좌동경;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1775-1776
    • /
    • 2006
  • This paper deals with the problem of friction measurement of an inverted pendulum system using the regression analysis and proposes a solution. The approach taken in this study is getting the friction from a regression relational expression between the motor voltage and the cart velocity of an inverted pendulum system. The result to compensate LQR (linear Quadratic Regulator) controller with the friction which is measured in system, improved the performance of the system. Above all, the study has found that the proposed compensation of the friction reduces the oscillation of the cart position. In conclusion, the proposed method is useful when parameters in the given system model are not known.

  • PDF

마찰진자형 면진받침의 설계 및 해석절차 보완에 관한 연구 (A Study on Complement of the Design and Analysis Procedures of Friction Pendulum System)

  • 김현욱;주광호;노상훈;송종걸
    • 한국산학기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.488-494
    • /
    • 2014
  • 마찰진자형 면진받침은 마찰면의 곡률반경과 중력에 의해 생성되는 고유 복원력과 마찰에 의한 감쇠력을 갖는다는 장점이 있지만, 마찰계수의 속도, 상재압 및 온도 등에 대한 의존성으로 거동에 대한 예측이 쉽지 않다. 본 연구에서는 각 기준에서 제시된 마찰진자형 받침의 설계 및 해석절차를 분석하여 추가적인 검토가 필요한 사항들에 대해 평가해 보았으며, 추가로 동일한 동특성을 갖는 납-고무 면진받침 시스템을 이용한 해석결과와 마찰진자형 면진받침 시스템의 해석결과를 비교하여 마찰진자형 면진받침이 갖는 상대적인 거동 특성을 비교 분석해 보았다.

Base isolation performance of a cone-type friction pendulum bearing system

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Sung-Wan;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.227-248
    • /
    • 2015
  • A CFPBS (Cone-type Friction Pendulum Bearing System) was developed to control the acceleration delivered to a structure to prevent the damage and degradation of critical communication equipment during earthquakes. This study evaluated the isolation performance of the CFPBS by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced with the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with a seismic isolator system consisting of 4 CFPBS. To confirm the earthquake-resistant performance, a numerical analysis program was prepared using the equation of the CFPBS induced from the equations of motion. The equation reported by Tsai for the rolling-type seismic isolation bearings was proposed to design the equation of the CFPBS. Artificial seismic waves that satisfy the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and the skew angle of friction surface were considered for numerical analysis with El Centro NS, Kobe NS and artificial seismic waves. The CFPBS isolation performance evaluation was based on the numerical analysis results, and comparative analysis was performed between the results from numerical analysis and simplified theoretical equation under the same conditions. The validity of numerical analysis was verified from the shaking table test.

마찰재 물성변화에 따른 마찰진자시스템을 적용한 LNG 탱크의 지진취약도 분석 (Seismic Fragility Analysis of a LNG Tank with Friction Pendulum System of Various Friction Coefficient)

  • 문지훈;김지수;이태형;한동석
    • 한국전산구조공학회논문집
    • /
    • 제30권2호
    • /
    • pp.95-102
    • /
    • 2017
  • 이 논문에서는 LNG 탱크를 지진으로부터 격리시키는 면진장치의 일종인 마찰진자시스템(FPS)의 성능변화에 따른 구조물 응답 및 지진취약도를 분석하였다. 마찰진자시스템(FPS)에 사용되는 마찰재 시편을 PVDF와 $TiO_2$의 배합비율에 따라 제작하였다. 제작한 마찰재 시편의 물성을 면진받침에 적용하여 구조물의 가속도 응답 및 외조 콘크리트의 하부 모멘트에 대하여 분석하고 각각의 한계상태에 대해 지진취약도를 분석하였다. 구조물의 지진취약도 분석을 통한 최적의 배합비를 가지는 마찰재 선정을 위해 각 한계상태에 따른 지진취약도 곡선의 가중치 설정 후 조합이 필요한 것을 확인하였다. 이를 통하여 다양한 구조물에 적용되는 마찰진자시스템의 요구 성능을 만족하는 최적의 마찰재 선정이 가능할 것으로 기대된다.