• 제목/요약/키워드: friction losses

검색결과 112건 처리시간 0.025초

환형관내 굴착유체의 편심회전유동에 관한 수치해석적 연구 (A Numerical Study on the Eccentric Rotation Flow Characteristics of Drilling Fluid in Annuli)

  • 서병택;장영근;김덕주
    • 한국기계기술학회지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2011
  • The paper concerns numerical study of fully developed laminar flow of a Newtonian water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose(CMC) solution in eccentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured when the inner cylinder rotates at the speed of 0~200 rpm. A numerical analysis considered mainly the effects of annular eccentricity and inner cylinder rotation. The present analysis has demonstrated the importance of the drill pipe rotation and eccentricity. In eccentricity of 0.7 of a Newtonian water, the flow field is recirculation dominated and unexpected behavior is observed. it generates a strong rotation directed layer, that two opposing effects act to create two local peaks of the axial velocity. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated.

Cylinder Deactivation 엔진의 동작모드 전환 시 과도상태 공연비 제어 (Transient Air-fuel Ratio Control of the Cylinder Deactivation Engine during Mode Transition)

  • 권민수;이민광;김준수;선우명호
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.26-34
    • /
    • 2011
  • Hybrid powertrain systems have been developed to improve the fuel efficiency of internal combustion engines. In the case of a parallel hybrid powertrain system, an engine and a motor are directly coupled. Because of the hardware configuration of the parallel hybrid system, friction and the pumping losses of internal combustion engines always exists. Such losses are the primary factors that result in the deterioration of fuel efficiency in the parallel-type hybrid powertrain system. In particular, the engine operates as a power consumption device during the fuel-cut condition. In order to improve the fuel efficiency for the parallel-type hybrid system, cylinder deactivation (CDA) technology was developed. Cylinder deactivation technology can improve fuel efficiency by reducing pumping losses during the fuel-cut driving condition. In a CDA engine, there are two operating modes: a CDA mode and an SI mode according to the vehicle operating condition. However, during the mode change from CDA to SI, a serious fluctuation of the air-fuel ratio can occur without adequate control. In this study, an air-fuel ratio control algorithm during the mode transition from CDA to SI was proposed. The control algorithm was developed based on the mean value CDA engine model. Finally, the performance of the control algorithm was validated by various engine experiments.

스프링클러 시스템에서 조도계수에 따른 CPVC 배관 마찰손실 영향의 연구 (A study on the effects of Friction loss of CPVC pipe according to Roughness coefficient in a sprinkler system)

  • 강웅일
    • 한국산학기술학회논문지
    • /
    • 제17권11호
    • /
    • pp.355-362
    • /
    • 2016
  • 배관 내에 유체가 흐를 때 사용되는 유체의 물리 화학적 성질에 따라 배관재질이 선택이 결정된다. 수계소화설비에 사용하는 유체는 대부분 물을 사용하므로 물속에 용해된 각종 이물질들은 관 벽에 스케일을 발생시키고 부식 및 배관 노후화를 촉진하여 마찰손실을 증가시켜 펌프의 효율을 저하시킨다. 이러한 요인을 가져오는 강관의 대체가능한 CPVC 배관은 부식에 강하고, 매끄러운 조도를 가지고 있어서 유체이송능력이 뛰어나고 배관무게가 가볍고 접착제결합 방식의 배관작업으로 시공성이 우수한 점을 들 수 있다. 그래서 설계 및 시공단계에서 마찰손실을 줄이기 위해 Hazen-Williams식을 CPVC(Chlorinated Poly-Vinyl Chloride)배관에 적용하여 조도계수에 따라 마찰손실을 조사하였다. 실제 아파트 현장에서의 적용사례를 통해 조도계수의 차이에 따라 손실수두를 조사한 결과 조도계수의 수치가 120인 강관일 때 마찰손실은 76.64MPa이고 150인 CPVC배관일 때 마찰손실은 50.72 MPa로서 34% 정도의 마찰손실이 개선되었음을 확인하였다. 또한 시공비 절감차원에서는 강관으로 시공할 때 1,585,158원이고 CPVC배관으로 시공 시에는 931,842원으로 41%정도의 시공비가 절감되는 것을 확인하여 전체 설비용량의 감소로 인한 소화시스템의 안정성 향상 및 시공비를 절감할 수 있는 것을 알 수 있었다.

유한 베어링 모델링을 이용한 왕복동형 압축기 크랭크축의 동적 거동 및 윤활특성 해석 (Dynamic Behavior and Lubrication Characteristics of a Reciprocating Compressor Crankshaft by n Finite Bearing Model)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제18권6호
    • /
    • pp.402-410
    • /
    • 2002
  • In this study, a hydrodynamic analysis of the reciprocating compressor crankshaft considering a finite bearing modelling of the journal bearings used in small refrigeration compressors is performed. In the problem formulation of the compression mechanism dynamics, all corresponding hydrodynamic forces and moments are considered using the finite bearing analysis in order to determine the crankshaft trajectory at each step. The solution of the Reynolds' equation is determined numerically using a finite difference method and a Newton-Raphson procedure was employed in solving the dynamic equations of the crankshaft. The crankshaft orbits fur the finite bearing model and short bearing theory were used to compare the effect of the hydrodynamic farces of the journal bearings on the dynamic and lubrication characteristics of the crankshaft-journal bearing system. Results show that the finite bearing model for the journal bearings must be considered in calculating for the accurate dynamic characteristics of the reciprocating compressor crankshaft.

Ni-SiC 복합도금층의 내마모성에 관한 연구 (A study on the wear resistance of Ni-SiC composite plating)

  • 김성호;한혜원;장현구
    • 한국표면공학회지
    • /
    • 제29권1호
    • /
    • pp.26-35
    • /
    • 1996
  • The Ni-SiC composite plating was performed in a Watt nickel solution and the wear resistance of the composite layer was studied on a pin-on-flat type wear tester. The volume losses and friction coefficients were measured. It was found that the quantity of SiC powder in the composite layers was affected by SiC concentration, pH, temperature, and agitation speed in the Watt nickel solution. The hardness and wear resistance of the coatings increased with SiC content. The quantity of SiC powder in the coating from a nickel sulfamate solution is larger than that of the Watt nickel solution, because the amount of nickel ions absorbed on the SiC powder in the nickel sulfamate solution is greater than that in the Watt's solution.

  • PDF

Minimization of consumption energy for a manipulator with nonlinear friction in PPT motion

  • Izumi, T.;Takase, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.95-99
    • /
    • 1994
  • Robot engineering is developed mainly in the field of intelligibility such as a manipulation. Considering the popularization of robots in the future, however, a robot should be studied from a viewpoint of saving energy because a robot is a kind of machine with a energy conversion. This paper deals with minimizing an energy consumption of a manipulator which is driven in a point-to-point control method. When a manipulator carries a heavy payload toward gravitation or the links are de-accelerated for positioning, the motors at joints generate electric energy. Since this energy can be regenerated to the source by using a chopper, the energy consumption of a manipulator is only heat loss by an electric and a frictional resistance of the motors. The minimization of the sum of these losses is reduced Lo a two-points boundary-value problem of an non-linear differential equation. The solutions are obtained by the generalized Newton-Raphson method in this paper. The energy consumption due to the optimum angular velocity patterns of two joints of a two-links manipulator is compared with conventional velocity patterns such as quadratic and trapezoid.

  • PDF

진공청소기용 원심팬의 성능향상을 위한 유동해석 (Flow Analysis for the Performance Improvement of the Centrifugal Fan in a Vacuum Cleaner)

  • 최용규;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.69-72
    • /
    • 2004
  • The performance of the centrifugal fan in a vacuum cleaner is affected by the hydraulic loss, such as the friction loss, the recirculation loss and the impact loss etc., Those losses depend on the rotational speed of the impeller, the inlet and exit widths, the relative flow angles to the blade, the number of the blades and the geometry of the shroud and the diffuser. These parameters are complicatedly interrelated, so the experimental means in analyzing the fans are rather limited. In the present study, the flow analysis are done numerically by changing the relevant fan parameters. A commercial code, STAR-CD, is used for the calculations. It is seen from the analyses that the computational results agree well with the experimental results. The results obtained can be used for the basic design of a centrifugal fan.

  • PDF

원심 터보홴 설계용 프로그램의 개발 및 응용에 대한 연구 (A Study on the Development and Application of a Design Program for Centrifugal Turbo Fan)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제20권6호
    • /
    • pp.71-79
    • /
    • 2016
  • This paper introduces the design method of the centrifugal turbo fan and the process of developing the design program of it. The developed design program confirmed the applicability by experimental performance data. Here, we proposed new velocity coefficients and considered various losses such as impeller inlet loss, vane passage flow loss, casing pressure loss, recirculation loss power, and disk friction loss power. Especially, the inlet and outlet widths of the impeller were newly determined by reflecting the experimental results. As a result, this fan design program shows a good performance result regardless of the types of impeller and is expected to be a very useful design tool.

형상비에 따른 고압 분사 노즐의 유동 특성 연구 (Flow characteristics of high pressurized jet with aspect ratio)

  • 노병준;정우태;이상진;김성민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.717-722
    • /
    • 2003
  • The aspect ratio is the main parameter which governs the outer flow pattern and nozzle performance. And in this study, some flow characteristics with the variation of nozzle aspect ratios such as mean pressure distributions along the center line of the outer flow, flow coefficients and the diffusion angles have been experimentally investigated. Through the experimental analysis, the higher aspect ratio was known to decrease the jet kinetic energy because of the friction losses at the outer of nozzle. As the result, it is found that the nozzle performance depends mainly on the aspect ratio of nozzle.

  • PDF

A PRESSURE DROP MODEL FOR PWR GRIDS

  • Oh, Dong-Seok;In, Wang-Ki;Bang, Je-Geon;Jung, Youn-Ho;Chun, Tae-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.483-488
    • /
    • 1998
  • A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development.

  • PDF