• Title/Summary/Keyword: friction losses

Search Result 112, Processing Time 0.024 seconds

An Experimental Study for the Effect of Friction Modifier Added in Fuel on the Engine Friction and Fuel Economy (연료 주입형 마찰 조정제가 엔진 마찰 및 연비에 미치는 영향에 대한 실험적 연구)

  • 조명래;강경필;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.133-137
    • /
    • 2002
  • This paper reports on the effect of fuel additive friction modifier on the engine friction and fuel consumption. The test of engine friction and fuel consumption is performed for the each oils and fuels. The TFA4724 friction modifier is added in test oil and fuel. The test results show that total engine friction is a decrease of 0.7-2.0% compared with base fuel, and fuel consumption is improved by 0.3%. The amount of friction reduction corresponds to that of boundary friction loss term in ring-pack friction losses. From the results, it is thought that the additive friction modifier in the fuel is effective to reduce the boundary friction in ring-pack.

Test and Simulation of An Engine for Long Endurance Miniature UAVs (장기체공 소형 UAV용 엔진 성능시험 및 시뮬레이션)

  • Shin, Young-Gy;Chang, Sung-Ho;Koo, Sam-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.99-105
    • /
    • 2005
  • Development of an engine with good fuel economy is very important for successful implementation of long endurance miniature UAVs (unmanned aerial vehicles). In the study, a 4-stroke glow-plug engine was modified to a gasoline-fueled spark-ignition engine. Engine tests measuring performance and friction losses were conducted to tune a simulation program for performance prediction. It has been found that excessive friction losses are caused by insufficient lubrication at high speeds. The simulation program predicts that engine power and fuel economy get worse with high altitude due to increasing portion of friction losses. The simulation results suggest quantitative guidelines for further development of a practical engine.

An Experimental Study on the Improvement of Fuel Economy according to Coolant and Oil Temperature (냉각수 및 오일의 온도에 따른 연비향상에 관한 실험적 연구)

  • Cho, Won-Joon;Kim, Hyung-Ik;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2009
  • Recently, the internal combustion engines have focused on reducing the $CO_2$ gas in order to cope with severe regulations for fuel economy. Therefore, various new technologies have been developed. Among them, cooling system is spotlighted because it has great effect on fuel economy. In this study, we measured the friction losses of engine parts according to engine speed and oil temperature. We also obtained optimized oil temperature which has the minimum friction losses. Then, we selected optimized oil temperature range and gave informations of friction losses for each engine parts. In addition, we analyzed relationship between coolant temperature and oil temperature by using engine performance test system. From this experiment, we obtained the database for relationship between coolant temperature and oil temperature. Then, we found the optimal temperature about engine oil. We analyzed BSFC and exhaust emissions by controlling the high coolant temperture. If we controlled coolant temperature more higher, BSFC has a little difference but exhaust emissions such as THC and CO have reduced. By using these experimental results, we predicted that IC engine have more low fuel consumption and exhaust emissions by optimized cooling control strategy.

Predicting Flow Resistance Coefficients in Water Supply Mains (주변환경을 고려한 상수관망의 관 마찰손실계수 산정)

  • 손광익
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.223-231
    • /
    • 1996
  • For the most efficient operation of water mains, 124 head losses in domestic water supply steel mains were measured to provide the values of friction coefficient and the variable affecting the deterioration rate of Hazen Williams' and Darcy-Weisbach's friction coefficient. The experimental results show that pipe age is governing the friction coefficient of large mains (Diameter > 1100 mm). On the other hands, pipe age and pipe diameter are affecting the variation of carrying capacity for small mains (Diameter < 1100 mm). The friction coefficient of water mains in foreign countries is higher than that in Korea by about 5 to 10 in Hazen Williams' C value. The growing rate of roughness height of domestic water main is about 0.41 mm/year which is higher than the average of United States of America. So further study is required to find out what causes the serious deterioration rate.

  • PDF

Analysis on the frictional loss of a bent-axis type hydraulic piston pump (사축식 유압 펌프의 마찰손실 해석)

  • Hong, Yeh-Sun;Doh, Yoon-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1548-1553
    • /
    • 2003
  • The design of a high speed axial piston pump for hydrostatic transmission systems requires specific understanding on where and how much its internal frictional and flow losses are generated. In this study, the frictional loss of a bentaxis type hydraulic piston pump was analyzed in order to find out which design factors influence the mechanical efficiency most significantly. To this end, the friction coefficients of the sliding components were experimentally identified by a specially constructed tribometer. Applying them to the three-dimensional dynamic model of the pump presented by Doh and Hong [1], the friction torques generated by the sliding components such as piston head , bearing and valve plate were theoretically computed. The accuracy of the computed results was confirmed by the comparison with the experimentally measured mechanical efficiency. In this paper, it is shown that the viscous friction on the valve plate and the drive shaft bearing is the primary sources of the frictional losses of the bent-axis type pump, while the friction forces on the piston contribute to them only slightly.

  • PDF

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

Study on the Characteristics of Piston Friction Losses for Fuel Injected Mass and Oil Temperature in a Gasoline Engine (가솔린 엔진에서 연료 분사량 및 오일 온도에 따른 피스톤 마찰손실 특성 연구)

  • Kang, Jongdae;Cho, Jinwoo;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.161-166
    • /
    • 2022
  • To measure the change in friction loss due to the control of fuel mass and oil temperature in a gasoline engine, the floating liner method was used to measure the friction generated by the piston of a single-cylinder engine. First, to check the effect of combustion pressure on friction, the friction loss was measured by adjusting the fuel mass. It was confirmed that the friction loss increased as the fuel mass increased under the same lubrication conditions. In addition, it was confirmed that the mechanical efficiency decreased as the fuel mass increased. Next, to check the effect of lubrication conditions on friction, the friction loss was measured by controlling the oil temperature. It was confirmed that friction loss increased as the oil temperature decreased at the same fuel mass. As the oil temperature decreases, the viscosity increases, resulting in decreased mechanical efficiency and increased friction loss.

Analysis of the Dynamic Behavior and Lubrication Characteristics of the Piston-Cylinder System in Reciprocating Compressors (왕복동형 압축기 피스톤-실린더계의 동적 거동 및 윤활특성 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.291-298
    • /
    • 2002
  • In this study, a numerical analysis f3r the piston secondary dynamics and lubrication characteristics of small refrigeration reciprocating compressors is presented. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic forces and moments as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, and pin location on the stability of the piston, the oil leakage, and friction losses.

Turbulent Drag Reduction Using the Sliding-Belt Device (미끄러지는 벨트 장치를 이용한 난류 항력 감소)

  • Choi, Byunggui;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1481-1489
    • /
    • 1999
  • The sliding-belt concept introduced by Bechert et al. (AIAA J., Vol. 34, pp. 1072~1074) is numerically applied to a turbulent boundary layer flow for the skin-friction reduction. The sliding belt is moved by the shear force exerted on the exposed surface of the belt without other dynamic energy input. The boundary condition at the sliding belt is developed from the force balance. Direct numerical simulations are performed for a few cases of belt configuration. In the ideal case where the mechanical losses associated with the belt can be ignored, the belt velocity increases until the integration of the shear stress over the belt surface becomes zero, resulting in zero skin friction on the belt. From practical consideration of losses occurred In the belt device, a few different belt velocities are given to the sliding belt. It is found that the amount of drag reduction is proportional to the belt velocity.