• 제목/요약/키워드: friction film

검색결과 475건 처리시간 0.025초

충격파와 경계층 간섭유동 제어에서 오일막을 이용한 유동가시화 (Flow Visualization Using Thin Oil-Film in the Flow Control of Shock Wave/Turbulent Boundary-Layer Interactions)

  • 이열
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.117-120
    • /
    • 2002
  • An experimental research has been carried out for flow control of the shock wave/turbulent boundary-layer interaction utilizing aeroelastic mesoflaps. Various shapes and thicknesses of the mesoflap are tested to achieve different deflections of the flap, and ail the results are compared to the solid-wall reference case without flow-control mechanism. Quantitative variation of skin friction has been measured downstream of the interactions using the laser interferometer skin friction meter, and qualitative skin friction distribution has been obtained by observing the interference fringe pattern on the oil-film surface. A strong spanwise variation in the fringe patterns with a narrow region of separation near the centerline is noticed to form behind the shock structure, which phenomenon is presumed partially related to three-dimensional flow structures associated with both the sidewalls and the bottom test surface. The effect of the shape of the cavity is also observed and it is noticed that the shape of the cavity is not negligible.

  • PDF

비대칭 마그네트론 스퍼터링법에 의한 비정질 질화탄소 박막의 합성 및 윤활 특성 (Synthesis and Lubricant Properties of Nitrogen doped Amorphous Carbon (a-C:N) Thin Films by Closed-field unbalanced Magnetron Sputtering Method)

  • 박용섭;조형준;최원석;홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.701-705
    • /
    • 2007
  • The incorporation of N in a-C film is able to improve the friction coefficient and the adhesion to various substrates. In this study, a-C:N films were deposited on Si and steel substrates by closed-field unbalanced magnetron (CFUBM) sputtering system in $Ar/N_2$ plasma. The lubricant characteristics was investigated for a-C:N deposited with total working pressure from 4 to 7 mTorr. We obtained high hardness up to 24GPa, friction coefficient lower than 0.1 and the smooth surface of having the extremely low roughness (0.16 nm). The physcial properties of a-C:N thin film are related to the increase of cross-linked $sp^2$ bonding clusters in the film. However, the decrease of hardness, elastic modulus and the increase of surface roughness, friction coefficient with the increase of $N_2$ partial pressrue might be due to the effect of energetic ions as a result of the increase of ion bombardment with the increase of ion density in the plasma.

그루브가 있는 실린더 라이너와 피스톤 링 사이의 윤활 특성에 대한 해석적 연구 (An Analytical Study on the Lubrication Characteristics between the Piston Ring and Grooved Cylinder Liner)

  • 조명래;한동철
    • Tribology and Lubricants
    • /
    • 제16권2호
    • /
    • pp.114-120
    • /
    • 2000
  • This paper reports on the theoretical analysis on the lubrication characteristics between the piston ring and the grooved cylinder liner. The circular shape piston ring and two types grooves are consider, and the minimum oil film thickness during the full engine cycle are obtained by using iterative technique. The comparative results of minimum oil film thickness and viscous friction force between the smooth and grooved liner are presented. And various design parameter of piston ring and liner groove are tested. The groove in the liner generally reduces the minimum value of minimum oil film thickness, but the maximum viscous friction force is increased at the minimum film position.

AFM을 이용한 PMMA (Poly Methyl Methacrylate) 박막의 나노트라이볼로지 연구 (Nanotribology of PMMA Thin Films Using an AFM)

  • 김승현;김용석
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.59-64
    • /
    • 2004
  • Nano-scratch tests were performed on PMMA thin films spin-coated on a Si substrate using an atomic force microscopy (AFM) with loads ranging form 10nN to 100nN. At low loads, a ridge pattern was formed on the PMMA thin film surface. No wear particles were observed during the pattern-forming mild wear. At high loads, severe wear by plowing occurred, accompanied by wear particles. The film with the highest hardness showed the highest wear resistance. Friction force generated during the scratching was measured, which was closely related with surface deformation of the film. A simple empirical equation to deduce scratch hardness of the film from a linear fixed-distance scratch test was proposed, and scratching-speed dependency of the scratch hardness was displayed.

난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(I)-시간 평균된 공간-시간 상관관계의 분석- (Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(I) -Analysis of Long-Time Averaged Space-Time Correlation-)

  • 양준모;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.140-152
    • /
    • 1997
  • A simultaneous measurement of the wall skin friction and near-wall streamwise velocity fluctuations is performed using hot film and hot wire anemometers to investigate the relation between them. Near-wall turbulence statistics measured with a hot-wire probe are in good agreement with previous results. Turbulence properties of the wall skin friction fluctuations measured with a hot film also show fairly good agreements with those measured by others except that rms level is lower in the present study. Long-time averaged space- time correlations show that the wall skin friction is highly correlated with a turbulence structure which is tilted from the wall in the streamwise direction. Tilting angles are obtained from the phase shifts between the wall skin-friction and streamwise velocity fluctuations. The convection velocity of the near-wall streamwise velocity obtained from the space-time correlation is in good agreement with that from the direct numerical simulation database.

Friction and Wear of Nitrogen Incorporated Diamond-like Carbon Films Under a Vacuum

  • Yoon, Eui-Sung;Kong, Hosung;Lee, Kwang-Ryeol;Oh, Jae-Eung
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.59-65
    • /
    • 1995
  • Tribological behaviors of nitrogen incorporated amorphous diamond-like carbon films were experimentally measured under a vacuum ($3 \times 10^{-5}$ Torr) using a ball (AISI 52100 steel)-on-disk wear-rig. Nitrogen incorporated DLC films were deposited by r.f. plasma assisted chemical vapor deposition method. Mixtures of benzene and ammonia or nitrogen gases were used as the reaction gases for the r.f. PACVD, and Si (100) wafer was used as the substrate. In the tribo-test, effects of DLC film thickness and normal load in friction were measured and discussed. Results showed that friction of nitrogen incorporated DLC films from a mixture gas of benzene and ammonia was lower than that of 100% benzene, specially in the measurement of minimum coefficient of friction. Differences in frictional characteristics of nitrogen incorporated DLC films were explained with the changes in chemical structures of the films. Result also showed that friction of DLC films increased with the sliding contact cycle, which remarkably accompanied with roll-shaped wear debris. Mechanisms and roles of the polymer-like wear debris were presented and discussed.

자동차 제동특성에 미치는 연마제의 영향에 관한 연구 (The Effect of Abrasive particles on Brake Performance)

  • 홍영석;장호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.332-340
    • /
    • 2000
  • Friction properties of automotive brake pads containing different types of abrasivess were investigated. Five different abrasives, including o-quartz, magnesia, magnetite, alumina, zircon, were employed in this investigation and size effects of the abrasives on friction characteristics were also studied using 1, 50, 140$\mu\textrm{m}$ size zircon. Experimental results showed that the hardness and size of these abrasive particles were strongly related to friction behaviors and wear mechanisms. Harder and smaller abrasives showed higher friction coefficient and more wear. The surfaces of friction materials with different sizes of abrasives showed that two different modes of abrasion (two-body and three-body abrasion) appeared during sliding. Considering the above results, abrasive materials were thought to destroy transfer film and the extent of the destruction depends on the types and sizes of abrasive particles. A mechanism of the wear mode transition (two-body to three body abrasive motion) was suggested considering the binding energy and friction energy in terms of abrasive particle size.

  • PDF

박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구 (Friction Power Loss Reduction for a Marine Diesel Engine Piston)

  • 안성찬;이상돈;손정호;조용주
    • Tribology and Lubricants
    • /
    • 제32권4호
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

자동차용 마찰재의 연마재가 마찰특성에 미치는 영향 (The Effect of Abrasive Particles on the Frictional Properties of Automotive Brake Friction Materials)

  • 장호;이은주;조근형
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.49-55
    • /
    • 2009
  • The frictional properties of automotive brake pads with four different ceramic materials such as magnesia, hematite, alumina, and zircon were investigated. A Krauss type friction tester using gray iron disks was used to examine the friction coefficient, intensity of friction force oscillation, and the tribe-surfaces. Results showed that the friction coefficient increased as the hardness of abrasives increases. Friction oscillation was also increased with hardness of the abrasives. However, the friction materials containing less abrasive particles produced stable friction films on the sliding surface. The transition between two-body and three body abrasion during sliding also played a crucial role in destructing the friction film on the pad surface and in determining various frictional properties.

SPM을 이용한 Si 표면위에 플라즈마 처리된 소수성 박막의 나노 트라이볼로지적 특성 연구 (Nanotribological characteristics of plasma treated hydrophobic thin films on silicon surfaces using SPM)

  • 윤의성;박지현;양승호;한흥구;공호성;고석근
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.35-42
    • /
    • 2001
  • Nanotribological characteristics between a Si$_3$N$_4$ AFM tip and hydrophobic thin films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various ranges of normal load. Plasma-modified thin polymeric films were deposited on Si-wafer (100). Results showed that wetting angle of plasma-modified thin polymeric film increased with the treating time, which resulted in the hydrophobic surface and the decrease of adhesion and friction. Nanotribological characteristics of these surfaces were compared with those of other hydrophobic surfaces, such as DLC, OTS and IBAD-Ag coated surfaces. Those of OTS coated surface was superior to those of others, though wetting angle of plasma-modified thin polymeric film is higher.

  • PDF