• Title/Summary/Keyword: friction film

Search Result 475, Processing Time 0.022 seconds

Study of transfer film in the sliding of nanoscale CuO-filled and fiber-reinforced polyphenylene sulfide (PPS) composites (CuO nanoparticle 및 fiber 로 구성된 PPS 복합재료의 sliding 조건하의 transfer film 에관한 연구)

  • Cho, Min-Haeng;Bahadur, Shyam;Park, Hye-Young;Kim, Yoon-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.967-972
    • /
    • 2004
  • The role of transfer films formed during sliding of polymer composites against steel counterfaces was studied in terms of the tribological behaviors of composites. Four kinds of composites were included in this study: (1) unfilled PPS, (2) PPS+2%CuO, (3) PPS+2%CuO+5% carbon fiber (CF), and (4) PPS+2%CuO+15%Kevlar. The filler material CuO was in nanoscale particulate form and the reinforcing material was in the form of short fibers. The composites were prepared by compression molding at $310^{\circ}C$ and sliding tests were run in the pin-on-disk sliding configuration. The counterface was made of tool steel hardened to 55-60 HRC and finished to a surface roughness of 0.09-0.10 ${\mu}m$ Ra. Wear tests were run for 6 hrs at the sliding speed of 1 m/s and contact pressure of 0.65 MPa. Transfer films formed on the counterfaces during sliding were investigated using AFM and SEM. The results showed that as the transfer film became smooth and uniform, wear rate decreased. PPS+2%CuO+15%Kevlar composite showed the lowest steady state wear rate in this study and its transfer film showed the smoothest and the most uniform characteristics. The examination of worn surfaces of PPS+2%CuO composite using X-ray area scanning (dot mapping) showed back-transfer of steel counterface material to the polymer pin surface. This behavior is believed to strengthen the polymer pin surface during sliding thereby contributing to the decrease in wear rate.

  • PDF

Analysis of a Journal and Thrust FDB and a Conical FDB in the Spindle Motor of a Computer Hard Disk Drive (HDD 스핀들 모터용 저널-스러스트 유체동압 베어링과 코니컬 유체동압 베어링의 특성해석비교)

  • Kim, Bum-Cho;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.478-483
    • /
    • 2005
  • This paper presents the comparison analysis of a Journal and thrust FDB (fluid dynamic bearing) and a conical FDB in a HDD spindle motor. The Reynolds equation is appropriately transformed to describe journal, thrust and conical bearing. Finite element method is applied to analyze the FDB by satisfying the continuity of mass and pressure at the interface between the hearings. The pressure field of the bearings is numerically approximated by applying the Reynolds boundary condition. The load and friction torque are obtained by integrating the pressure and the velocity gradient along the fluid film. The flying height of the spindle motor is measured to verify the proposed analytical result. This research shows that the conical bearing generates bigger load capacity and less friction torque than the journal and thrust bearing in a HDD spindle motor.

  • PDF

A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps (범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구)

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.252-259
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performances, stiffness, damping coefficient and load capacity, depend on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1 mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

Effect of surface topography on wetting angle and micro/nano-tribological characteristics (표면형상이 젖음각과 마이크로/나노 트라이볼로지 특성에 미치는 영향)

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Ho-Sung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.25-33
    • /
    • 2002
  • Effect of surface topography on the water wetting nature and micro/nano tribological characteristics of Si-wafer and PTFE was experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun in different argon don dose conditions in a vacuum chamber to change the surface topography, Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribo tester, SPM (scanning prove microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. The water wetting angle of tile ion beam treated samples also increased with the ion dose. Results also showed that micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-triboloSical characteristics showed little dependence on the wetting angles. The water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

  • PDF

A Study on Slipping Phenomenon in a Media Transport System (급지 장치에서의 미끄러짐 현상에 대한 연구)

  • 유재관;이순걸;임성수;김시은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.681-685
    • /
    • 2004
  • A media-feeding (or media-transport) system is a key component in daily consumer systems such as printers, copiers and ATM's. The role of the media-transport system is to feed a medium, which is usually in the form of a thin film, to the main process in a uniform and repeatable manner. Even small slippage between the media and the feeding rollers could significantly degrade the performance of the entire system. The slippage between the medium and the feeding rollers is determined by many parameters which include the friction coefficient between the feeding rollers and the medium material, the angular velocity of the feeding rollers, and the normal force applied by feeding rollers on the medium. This paper investigates the effect of the normal force and the angular velocity of feeding rollers on the slippage of the medium. Authors have constructed a test bed for experiments, which consists of a feeding module and various measuring devices. Using regular paper as media being fed, the authors experimentally measured the slippage of the medium under various normal forces and angular velocities of driving feeding roller. Also the authors developed a novel two-dimensional simulation model for the media-transport system. The paper medium is modeled as a set of multiple rigid bodies interconnected by revolute joints and rotational springs and dampers. Simulations were executed using a multi-body dynamic analysis tool called RecurDy $n^{ⓡ}$. The slippage obtained by the simulation is compared to experimental results.ults.

  • PDF

Characterization of Fracture Toughness and Wear Behavior for Plasma Ceramic Coated Materials (플라즈마 코팅재료의 파괴인성과 마모 거동)

  • Ha, Sun-Ho;Lee, Dong-Woo;Rehman, Atta Ur;Wasy, Abdul;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.123-130
    • /
    • 2013
  • Zirconia is well known in industrial applications for its mechanical characteristics. DLC (diamond-like carbon) have high elastic modulus, high electric resistivity, high dielectric constant, high wear resistance, low friction coefficient, bio compatibility, chemically inert and thermally stable. Because of all these physical and chemical properties these types of coatings have become key procedure for thin coating. Friction coefficient of DLC films is already evaluated and the current work is a further advancement by calculating the fracture toughness and wear resistance of these coatings. In the present study DLC thin film coatings are developed on $ZrO_2$ alloy surface using Plasma Enhanced Chemical Vapor Deposition (PECVD) method. Vicker hardness test is employed and it was concluded that, DLC coatings increase the Vickers hardness of ceramics.

Vibration Analysis for Failure Diagnosis of Cylinder Liner of Large Ship Engine (선박엔진의 실린더 라이너의 손상 진단을 위한 진동 분석법)

  • Koo, Hyunho;Cho, Yonsang;Park, Junhong;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Damage to the cylinder liner of large ship engines, such as scuffing on the surface, can occur very easily because it is operated in a corrosive environment. This scuffing may be due to oil film destruction and corrosive wear caused by water and sulfur included in the fuel, abrasive impurities, and poor lubricants. Thus, a method for monitoring the condition and diagnosing the failure of the cylinder liner and piston ring is needed. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which simulated an engine cylinder in a corrosive atmosphere. The lubricants used were base oil, stirred oil with distilled water, a NaCl solution, and dilute sulfuric acid. The friction coefficient and frequency spectrum were measured using a load cell and acceleration sense in each experimental condition. We then used these results to diagnose the failure of the cylinder liner.

Experimental Control Characteristic Investigation of Ball Bearing Guided Linear Motion Stage with Diamond-like Carbon Coated Guide Rail (DLC 코팅된 가이드레일을 이용한 볼베어링 직선 이송 스테이지의 진공환경 제어 특성 분석)

  • Shim, Jongyoup;Khim, Gyungho;Hwang, Jooho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.392-397
    • /
    • 2014
  • Recently, there is an increase in the need for precision linear stages with vacuum compatibility in such areas as lithography equipment for wafer or mask manufacturing, mask mastering equipment for optical data storage and electron beam equipment. A simple design, high stiffness and low cost can be achieved by using ball bearings. However, a ball bearing have friction and wear problems just as in ambient air. In order to decrease the friction, a special finish, a diamond-like carbon (DLC) film coating, is applied to the surface of a guide rail by sputtering deposition. This paper presents the result of an experimental investigation on the control performance of a ball bearing-guided linear motion stage under two environmental conditions: in air and vacuum. A comparison between the results with and without the DLC coating was also considered in the experimental investigation.

A Tribological Investigation on Laser Textured Disk and Mechanically Textured Disk of Computer Hard Disk Drive (컴퓨터 하드디스크 드라이브의 레이저 텍스쳐 디스크와 미케니칼 텍스쳐 디스크의 마모거동에 관한 연구)

  • Kim, Woo-Seok;Kim, Do-Hyung;Hwang, Pyung;Kim, Jang-Kyo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.106-114
    • /
    • 1998
  • Tribological investigation of ultra thin film magnetic storage disks which have two different kinds of start/stop zone of laser textured bump disk and mechanically textured disk for before CSS test and after CSS test. To measure surface roughness, height reduction before/after CSS test and obtain accurate topographies, AFM(Atomic Force Microscope) which is most powerful recently has been used. The result of statistical analysis showed that both laser textured bump height and mechanically textured zone height have been reduced about 4~7nm after 15000 cycle CSS test. Using commercial Nano-Indenter, ramping load scratch test has been performed to investigate friction characteristic for laser textured zone and mechanically textured zone before/after CSS test.

  • PDF

Micro/nano Tribological and Water Wetting Characteristics of Ion Beam Treated PTFE Surfaces

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Hosung
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2002
  • Micro/nano tribological and water wetting characteristics of ion beam treated PTFE (polytetrafluoroethylene) surfaces were experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun at different argon ion dose conditions in a vacuum chamber to modify the topography of PTFE surface. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribe tester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. Water wetting angle of the ion beam treated samples increased with the ion dose, so the surface shows an ultra-hydrophobic nature. Micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-tribological characteristics showed different results. The scale effect of surface topography on tribological characteristics was discussed. Also, the water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.