DOI QR코드

DOI QR Code

Experimental Control Characteristic Investigation of Ball Bearing Guided Linear Motion Stage with Diamond-like Carbon Coated Guide Rail

DLC 코팅된 가이드레일을 이용한 볼베어링 직선 이송 스테이지의 진공환경 제어 특성 분석

  • Shim, Jongyoup (Ultraprecision Systems Lab., Korea Institute of Machinery and Materials) ;
  • Khim, Gyungho (Ultraprecision Systems Lab., Korea Institute of Machinery and Materials) ;
  • Hwang, Jooho (Ultraprecision Systems Lab., Korea Institute of Machinery and Materials)
  • Received : 2014.07.21
  • Accepted : 2014.07.29
  • Published : 2014.08.15

Abstract

Recently, there is an increase in the need for precision linear stages with vacuum compatibility in such areas as lithography equipment for wafer or mask manufacturing, mask mastering equipment for optical data storage and electron beam equipment. A simple design, high stiffness and low cost can be achieved by using ball bearings. However, a ball bearing have friction and wear problems just as in ambient air. In order to decrease the friction, a special finish, a diamond-like carbon (DLC) film coating, is applied to the surface of a guide rail by sputtering deposition. This paper presents the result of an experimental investigation on the control performance of a ball bearing-guided linear motion stage under two environmental conditions: in air and vacuum. A comparison between the results with and without the DLC coating was also considered in the experimental investigation.

Keywords

References

  1. Moneck, M. T., Okada, T., Fujimori, J., Ksuya, T., Katsumura, M., Lida, T., Kyriyama, K., Lin, W. C., Sokalski, V., Powell, S., Bain, J. A., 2011, Fabrication and Recording of Bit Patterned Media Prepared by Rotary Stage Electron Beam Lithography, IEEE Trans. Magn. 47:10 2656-2659. https://doi.org/10.1109/TMAG.2011.2157671
  2. Kitahara, H., Uno, Y., Suzuki, H., Kobayashi, T., Tanaka H., Kojima Y., Kobayashi, M., Katsumura, M., Wada, Y., Lida, T., 2010, Electron Beam Recorder for Patterned Media Mastering, Jpn J. Appl. Phys. 49:6s 1-9.
  3. Katsumura, M., Sato, M., Hashimoto, K., Hosoda, Y., Kasono, O., Kitahara, H., Kobayashi, M., Lida, T., Kuriyama, K., 2005, Electron Beam Recording beyond 200 Gbit/in2 Density for Next Generation Optical Disk Mastering, Jpn J. Appl. Phys. 44:5B 3578-3582. https://doi.org/10.1143/JJAP.44.3578
  4. Boamfa, M. I., Neijzen, J. H. M., 2005, Two-Dimensional Optical Storage Mastering: Adding a New Dimension to Liquid Immersion Mastering, Jpn J. Appl. Phys. 44:5B 3583-3586. https://doi.org/10.1143/JJAP.44.3583
  5. Neijzen, J. H. M., Meinders., E. R., Santen, H., 2004, Two-Dimensional Optical Storage Mastering: Adding a New Dimension to Liquid Immersion Mastering, Jpn J. Appl. Phys. 43:7B 5047-5052. https://doi.org/10.1143/JJAP.43.5047
  6. Nadzeyka, A., Peto, L., Bauerdick, S., Mayer, M., Keskinbora, K., Grevent, C., Weigand, M., Hirscher, M., Schutz, G., 2012, Ion beam lithography for direct patterning of high accuracy large area X-ray elements in gold on membranes, Microelec. Eng. 98 198-201. https://doi.org/10.1016/j.mee.2012.07.036
  7. Basith, M. A., Vitie, S. M., McGrouther, D., Chapman, J. N., Weaver, J. M. R., 2011, Direct comparison of domain wall behavior in permalloy nanowires patterned by electron beam lithography and focused ion beam milling, J. Appl. Phys. 110:8 (083904)1-8.
  8. Reyntjens, S., Puers, R., 2001, A review of focused ion beam applications in microsystem technology, J. Micromech. Microeng. 11 287-300. https://doi.org/10.1088/0960-1317/11/4/301
  9. Maile, B. E., Henschel, W., Kurz, H., Rienks, B., Polman, R., Kaars, P., 2000, Sub-10nm Linewidth and Overlay Performance Achieved with a Fine-Tuned EBPG-5000 TFE Electron Beam Lithography System, Jpn. J. Appl. Phys. 39:12B 6836-6842. https://doi.org/10.1143/JJAP.39.6836
  10. Nielsen, E. H., Greibe, T., Mortensen, N. A., Kristensen, A., 2014, Single-spot e-beam lithography for defining large arrays of nano-holes, Microelec. Eng. 121 104-107. https://doi.org/10.1016/j.mee.2014.03.025
  11. Schenk, C., Buschmann, S., Risse, S., Eberhardt, R., Tunnermann, A., 2008, Comparison between flat aerostatic gas-bearing pads with orifice and porous feedings at high-vacuum conditions, Prec. Eng. 32:4 319-328. https://doi.org/10.1016/j.precisioneng.2008.01.001
  12. Peijnenburg, A. T. A., Vermeulen, J. P. M., Eijk, J. V., 2006, Magnetic levitation systems compared to conventional bearing systems, Microelec. Eng. 83 1372-1375. https://doi.org/10.1016/j.mee.2006.01.248
  13. Gill, S., Rowntree, A., 2010, Liquid Lubricants for Spacecraft Applications, Springer, Netherlands.
  14. Bowden, F. P., Tabor, D., 1971, The Friction and Lubrication of Solids, Oxford University Press, London.
  15. Fukada, S., Fang, B., Shigeno, A., 2011, Experimental analysis and simulation of nonlinear microscopic behavior of ball screw mechanism for ultra-precision positioning, Prec. Eng. 35:4 650-668. https://doi.org/10.1016/j.precisioneng.2011.05.006
  16. Wulp, H., With, E., Pistecky, P. V., Spronck, J. W., 1995, Compact, piezo-driven, vacuum compatible rotation device, Rev. Sci. Instrum. 66:11 5339-5343. https://doi.org/10.1063/1.1146109