• Title/Summary/Keyword: friction capacity

Search Result 469, Processing Time 0.04 seconds

A Comparison of Bearing Capacity Equations for a Single Pile Considering Negative Skin Friction (부주면마찰력을 고려한 단말뚝의 허용지지력 공식 분석)

  • Lee, Sung-June;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.27-37
    • /
    • 2010
  • Downdrag force develops when a pile is driven through a soil layer which will settle more than a pile. There is no obvious criterion for application of the current pile design method considering the negative skin friction. Therefore, in this study, numerical analyses were performed to investigate the behavior of a single pile subjected to negative skin friction and their results were used to determine the applicability of the current design method. Including three different sites in Song-do area and two different cases with friction pile and end bearing pile conditions, total six cases were considered. The load-settlement relationships and the neutral points were estimated for different end bearing conditions and the allowable bearing capacity of piles with negative skin friction was investigated through parametric studies. Based on the results showed that the negative skin friction made a major influence on the settlement of a pile and its stress. However the allowable bearing capacity may not be influenced by the negative skin friction. Compared with the allowable bearing capacity obtained from the ultimate bearing capacity with the safety factor of 3, the current design method with the safety factor of 3 underestimated the allowable bearing capacities regardless of the end bearing conditions. On the other hand, the current design method with the safety factor of 2 yielded reasonable results depending on the end bearing conditions.

Evaluation of Vertical Bearing Capacity for Bucket and Shallow Foundations Installed in Sand (사질토 지반에 설치된 버킷기초 및 얕은기초의 수직지지력 산정)

  • Park, Jeongseon;Park, Duhee;Jee, Sunghyun;Kim, Dongjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • The vertical bearing capacity of a bucket foundation installed in sand can be calculated as sum of the skin friction and end bearing capacity. However, the current design equations are not considering the non-associated flow characteristics of sand and the reduction in the skin friction and increase in the end bearing capacity when the vertical load is applied. In this study, we perform two-dimensional axisymmetric finite element analyses following non-associated flow rule and calculate the vertical bearing capacity of circular bucket foundation of various sizes installed in sand of different friction angles. After calculating the skin friction and end bearing force at the ultimate state, design equations are derived for each. The skin friction of bucket foundation is shown significantly small compared to the end bearing capacity. Considering the difference with the available design equation for piles, it is recommended that the equation for piles is used for the bucket foundation. A new shape-depth factor ($s_q{\cdot}d_q$) for bucket foundation is recommended which also accounts for the increment of the end bearing capacity due to skin friction. Additionally, the shape and depth factor of embedded foundation proposed from the associated flow rule can overestimate the bearing capacity in sand, so it is more adequate to use the shape-depth factor proposed in this study.

A proposal for the analysis of the PDA testing results of the extra-long piles (초장대말뚝의 동재하시험 해석방안)

  • Lee, Myung-Whan;Hong, Hun-Sung;Kim, Sung-Hoi;Jun, Young-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1269-1278
    • /
    • 2006
  • These days the construction of extra-long piles increases. It is not unusual to install piles whose length exceed 45m. In such cases, the estimated value of negative skin friction becomes larger, often larger than the design load. In order to be sure of the safety of the super structure, the magnitude of the positive skin friction and the base bearing capacity should be known. In practice dynamic pile loading tests using PDA is the only possible measure to meet this requirement. However the analysis of dynamic pile loading test for such extra-long piles requires a thorough understanding of the pile-soil behaviour. In this paper, a new method to evaluate the positive skin friction and end bearing capacity from the normally performed PDA test is proposed. The proposed method was verified by performing specially designed pilot testings.

  • PDF

A Study on the Improvement of Bearing Capacity Prediction Equation for Auger-drilled Piling (매입말뚝공법의 지지력 예측식 개선에 관한 연구)

  • 최도웅;한병권;서영화;조성한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.382-389
    • /
    • 2002
  • Recently, auger-drilled piling has been widely used in urban area to reduce the air pollution and noise. But this construction method that its basic theory was introduced from Japan may be changed depending on the each piling company and construction field condition. Therefore, the design code and management method for auger-drilled piling is not defined yet. Especially, the lack of research on the bearing capacity of auger-drilled piling leads to the absence of rational bearing capacity prediction equation. This paper presents the optimum design code and economical construction method of the auger-drilled piling by proposing the new bearing capacity prediction equation based on the site specific soil types and construction conditions. In this paper, existing bearing capacity prediction equations and current pile load tests were compared. And the end bearing capacity and skin friction characteristics were also analyzed by comparing the results of CAPWAP. From the results of analysis, a reliable bearing capacity prediction equation considered soil types is proposed.

  • PDF

Effect Reinforced Ground using Geocell (지오셀을 적용한 지반의 보강효과에 관한연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.782-791
    • /
    • 2009
  • This study was carried out the laboratory tests and field plate load test in order to evaluate the reinforcement effect of geocell for road construction. The geocell-reinforced subgrade shows the increment of cohesion and friction angle with comprison of non-reinforced subgrade. In addition, the field plate load test was performed on the geocell-reinforced subgrade to estimate the bearing capacity of soil. The direct shear test was conducted with utilizing a large-scale shear box to evaluate the internal soil friction angle with geocell reinforcement. The number of cells in the geocell system is varied to investigate the effect of soil reinforcement. The theoretical bearing capacity of subgrade soil with and without geocell reinforcement was estimated by using the soil internal friction angle. The field plate load tests were also conducted to estimate the bearing capacity with geocell reinforcement. It is found out that the bearing capacity of geocell-reinforced subgrade gives 2 times higher value than that of unreinforced subgrade soil. In the future, the reinforcement effect of the geocell rigidity and load-balancing effect of the geocells should be evaluated.

  • PDF

Seismic Capacity Design and Retrofit of Reinforced Concrete Staggered Wall Structures

  • Kim, Jinkoo;Choi, Younghoo
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.285-300
    • /
    • 2017
  • This study investigates the seismic performance of a staggered wall structure designed with conventional strength based design, and compares it with the performance of the structure designed by capacity design procedure which ensures strong column-weak beam concept. Then the seismic reinforcement schemes such as addition of interior columns or insertion of rotational friction dampers at the ends of connecting beams are validated by comparing their seismic performances with those of the standard model structure. Fragility analysis shows that the probability to reach the dynamic instability is highest in the strength designed structure and is lowest in the structure with friction dampers. It is also observed that, at least for the specific model structures considered in this study, R factor of 5.0 can be used in the seismic design of staggered wall structures with proposed retrofit schemes, while R factor of 3.0 may be reasonable for standard staggered wall structures.

Effect of Shear Reinforcement and Compressive Stress on the Shear Friction Strength of Concrete (콘크리트의 전단마찰 내력에 대한 횡보강근 및 압축응력의 영향)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2016
  • This study examined the effect of transverse reinforcement and compressive stress on the shear friction performance at the shear interface intersecting two structural elements with various concrete types. From the prepared 12 push-off test specimens, various characteristics at the interface were measured as follows: crack propagation, shear load-relative slip relationship, initial shear cracking strength, ultimate shear friction strength, and shear transfer capacity of transverse reinforcement. The configuration of transverse reinforcement and compressive strength of concrete insignificantly influenced the amount of relative slippage at the shear friction plane. With the increase of applied compressive stress, the shear friction capacity of concrete tended to increase proportionally, whereas the shear transfer capacity of transverse reinforcement decreased, which was insignificantly affected by the configuration type of transverse reinforcement. The empirical equations of AASHTO-LRFD and Mattock underestimate the shear friction strength of concrete, whereas Hwang and Yang model provides better reliability, indicating that the mean and standard deviation of the ratios between measured shear strengths and predictions are 1.02 and 0.23, respectively.

Friction Effects on the Performance of Double-Bumped Air Foil Bearings (이중범프포일 공기베어링의 성능에 미치는 마찰효과)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.162-169
    • /
    • 2007
  • This paper deals with friction effects on the performance of double-bumped AFBs. The stiffness and damping coefficients of the double bump vary depending on the external load and its friction coefficient. The double bump can be either in the single or double active region depending on vertical deflection. The equivalent stiffness and damping coefficients of the bump system are derived from the vertical and horizontal deflection of the bump, including the friction effect. A static and dynamic performance analysis is carried out by using the finite difference method and the perturbation technique. The results of the performance analysis for a double-bumped AFB are compared with those obtained for a single-bumped AFB. This paper successfully proves that a double bumped AFB has higher load capacity, stiffness, and damping than a single-bumped AFB in a heavily loaded condition.

A Study of Micro-piles Method combined with the Resisting Fixture interacting the power of frictional resistance in a contrary direction (양방향 저항체를 결합한 마이크로파일공법 연구)

  • Baik, Dong-Ho;Lee, Sang-Moo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.74-75
    • /
    • 2014
  • In remodeling business or construction of both new strucures and existing structures, Case that pile foundation was set is often. Micro pile, holding compressive force and tensile force by spherical friction, is supported by skin friction rather than end bearing capacity. but, This is weak in tension. Active area of micro pile's skin friction is narrow and micro pile don't do unification behavior hence. So bearing capacity was not fully mobilized in existing researching. In this study, in order to compensate for this method, micro pile to install Resisting Fixture is proposed.

  • PDF

A Study on the Skin Friction Characteristics of SIP(Soil-cement Injected Precast Pile) (SIP 말뚝의 주면마찰 특성에 관한 연구)

  • 천병식;임해식;강재모;김도형;지원백
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.583-588
    • /
    • 2002
  • As environmental problem in course of construction has been a matter of interest, noise and vibration in the process of piling are considered as a serious problem. For this reason, the use of SIP method inserting pile as soon as boring and cement grouting is rapidly increasing for preventing vibration and noise. But a resonable bearing capacity formula for SIP method does not exit and even the standard specification for domestic condition isn't formed, though the lateral friction between cement paste and the ground does an important role and boring depth largely influences to the design bearing capacity, applying the SIP method . Therefore, the lateral friction was analyzed after the direct shear test worked with the lateral face of SIP and the soil.

  • PDF