• Title/Summary/Keyword: friction capacity

Search Result 469, Processing Time 0.027 seconds

Shear strength of connections between open and closed steel-concrete composite sandwich structures

  • Kim, Woo-Bum;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.169-181
    • /
    • 2011
  • The behavior of connections between open sandwich slabs and double steel skin composite walls in steel plate-concrete(SC) structure is investigated by a series of experimental programs to identify the roles of components in the transfer of forces. Such connections are supposed to transfer shear by the action of friction on the interface between the steel surface and the concrete surface, as well as the shear resistance of the bottom steel plate attached to the wall. Experimental observation showed that shear transfer in slabs subjected to shear in short spans is explained by direct force transfer via diagonal struts and indirect force transfer via truss actions. Shear resistance at the interface is enhanced by the shear capacity of the shear plate as well as friction caused by the compressive force along the wall plate. Shear friction resistance along the wall plate was deduced from experimental observation. Finally, the appropriate design strength of the connection is proposed for a practical design purpose.

Seismic Performance Evaluation of Special Reinforced Concrete Moment Resisting Frames With Hybrid Slit-Friction Damper (복합 슬릿-마찰 감쇠장치가 적용된 철근 콘크리트 특수 모멘트 저항골조의 내진성능 평가)

  • Lee, Joon-Ho;Kim, Gee-Cheol;Kim, Jin-Koo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • This study develops a new hybrid passive energy dissipation device for seismic rehabilitation of an existing structure. The device is composed of a friction damper combined with a steel plate with vertical slits as a hysteretic damper. Analytical model is developed for the device, and the capacity of the hybrid device to satisfy a given target performance is determined based on the ASCE/SEI 7-10 process. The effect of the device is verified by nonlinear dynamic analyses using seven earthquake records. The analysis results show that the dissipated inelastic energy is concentrated on the hybrid damper and the maximum interstory drift of the SMRF with damping system satisfies the requirement of the current code.

Study on the Improvement of Milling Recovery and Performance (IV) -Rice Whitening Performance of the Combined Abrasive- and Friction-type Whiteners- (도정수율(搗精收率)과 성능향상(性能向上)을 위(爲)한 연구(硏究)(IV) -연삭(硏削)·마찰(磨擦)의 조합식(組合式) 정백작용(精白作用)이 정백성능(精白性能)에 미치는 영향(影響)-)

  • Kim, Sam Do;Chung, Chang Joo;Noh, Sang Ha
    • Journal of Biosystems Engineering
    • /
    • v.7 no.2
    • /
    • pp.72-85
    • /
    • 1983
  • Rice whitening is performed by basically two different whitening actions known as abrasive and frictional. The former adopted in the emery stone abrasive type whiteners and the latter in the jet-air friction type. Comparative milling yields and whitening efficiencies between the whitening system consisting of jet-air friction type whiteners only and the system consisting of both abrasive- and jet-air friction-types have not yet been rigorously defined. This study was to examine the effect of combined operations of abrasive- and jet-air friction-type rice whiteners on milling yields and whitening efficiencies. The small capacity commercial units of the abrasive- and friction-type whiteners were used for the experiments. The combinations of whitening treatments were: 1) Once in the abrasive type and then two to three times in the friction type, 2) twice in the abrasive and then two to three times in the friction type and 3) three to five times in friction type. In these tests, counter pressures for the friction type whiteners were established differently as required to get about the same degree of whitening at the end of predetermined numbers of the repeated operations. The speed of emery stone and the slot angle of the screen were also the factors varied in the abrasive type whitener. Sheukwang rice variety having 13.05% M.C. was used in the tests. The dependent variables were the milled- and head-rice recoveries and electricity consumption. The results of the study are summarized as follows: 1. It was found that in the whitening systems consisting of abrasive- and friction-type whiteners slot angle of the screen, the rotational speed of emery stone roller had significant effect on the milling yields and whitening efficiency. In general, the increase of the emery stone roller speed from 690 to 950 rpm presented a positive effect on milling yield, and one-pass abrasive milling combinations had higher milling yields than two-pass abrasive milling combinations. 2. It was apparent that if the slot angle of the screen and the speed of emery stone roller are modified and set at an optimum level, the combination whitening system consisting of abrasive- and friction-type whiteners is better than the pure frictional whitening system consisting of jet-air friction type in terms of milling yields and efficiencies. 3. In the rice whitening system consisting of abrasive- and jet-air friction-type whiteners, the best whitening performance was obtained when the slot angle of the screen and the rotational speed of emery stone roller were $45^{\circ}$ and 950rpm, respectively, for the one-pass abrasive milling combinations. However, for the two-pass abrasive mi11ing combinations, the best performance was obtained with $75^{\circ}$ of slot angle and 950 rpm of the emery stone roller speed. 4. As compared with pure frictional whitening systems, the combination systems produced more milled rice by 0.8-1.0% point and more head rice by 0.5-1.5% point, and consumed less electricity by 0.15-0.20 KwH per 100kg of milled rice when the abrasive whiteners were operated in the modified conditions as described in item 3 above. Further study is recommended to find out optimum operational and design conditions of abrasive type whiterners.

  • PDF

Case Study of Friction Piles Driven into Clayey Soils on the Central Coast of Vietnam (베트남 중부 연안의 대심도 점토지반에 시공된 강관 마찰 말뚝의 항타시공관리)

  • Seol, Hoon-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.19-31
    • /
    • 2024
  • In Korea, driven piles are generally penetrated up to weathered rock or harder strata. Friction piles have been used to some extent in the southwest coastal area with deep soils; however, friction piles are not extensively due to uncertainties about construction quality. The embedded pile construction method is primarily used due to noise and vibration complaints. However, in Southeast Asian countries (e.g., Cambodia, Myanmar, and Vietnam), where soft sediments are deep, the driven pile method is commonly used due to its economic advantages. Construction companies are increasingly entering overseas construction markets, e.g., Southeast Asia; thus, it is necessary to understand the behavior of driven friction piles in the soil and improve on-site engineering management to gain market competitiveness in these countries. In this study, the bearing capacity of friction piles driven into clayey coastal soils in Vietnam with time-dependent characteristics was evaluated based on the dynamic and static pile load tests. Based on the results, a modified Danish formula is proposed for on-site quality management.

Effect of Annealing Conditions on Microstructure and Damping Capacity in AZ61 Magnesium Alloy (열처리조건에 따른 AZ61 마그네슘 합금의 미세조직과 감쇠능에 미치는 영향)

  • Ahn, Jae-Hyeon;Kim, Kwon-Hoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.2
    • /
    • pp.56-62
    • /
    • 2018
  • Many researchers have studied on the precipitation control after solution treatment to improve the damping capacity without decreasing the strength. However, studies on the damping capacity and microstructure changes after deformation in the solid solution strengthening alloys were inadequate, such as the Al-Zn series magnesium alloys. Therefore, in order to investigate the effect of annealing condition on microstructure change and damping a capacity of AZ61 magnesium alloy. In this study, it was confirmed that the microstructure changes affect the damping capacity and hardness when annealed AZ61 alloy. AZ61 magnesium alloy was rolled at $400^{\circ}C$ with rolling reduction of 30%. These specimens were annealed at $350^{\circ}C$ to $450^{\circ}C$ for 30-180 minutes. After annealing, microstructure was observed by using optical microscopy, and damping capacity was measured by using internal friction measurement machine. Hardness was measured by Vickers hardness tester under a condition of 0.3 N. In this study, static recrystallization was observed regardless of the annealing conditions. In addition, uniform equiaxed grain structure was developed by annealing treatment. Hardness is decreased with increasing grain size. This is associated with Hall-Petch equation and static recrystallization. In case of damping capacity, bigger grain size show the larger damping capacity.

Study of Ground Reinforced Effect using the Porous Geocell (다공성 지오셀을 이용한 지반 보강효과에 관한 연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Kim, Young-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • The laboratory tests and field plate load test were carried out to evaluate the reinforcement effect of geocell for road construction. The geocell-reinforced subgrade shows the increment of cohesion and friction angle with comparison of non-reinforced subgrade. In addition, the field plate load test was performed on the geocell-reinforced subgrade to estimate the bearing capacity of soil. The direct shear test was conducted with utilizing a large-scale shear box to evaluate the internal soil friction angle with geocell reinforcement. The number of cells in the geocell system is varied to investigate the effect of soil reinforcement. The theoretical bearing capacity of subgrade soil with and without geocell reinforcement was estimated by using the soil internal friction angle. The field plate load tests were also conducted to estimate the bearing capacity with geocell reinforcement. It is found out that the bearing capacity of geocell-reinforced subgrade gives 2 times higher value than that of unreinforced subgrade soil. The settlement and the distribution of deformation were also estimated by using the finite element method. The magnitude of settlements on the geocell-reinforced subgrade and unreinforced subgrade are 6.8cm and 1.2cm, respectively.

  • PDF

Preliminary Load Tests for the Design of Large Diameter Drilled Shaft by Bi-directional Loading Method at Toe (대구경 현장타설말뚝의 설계를 위한 선단재하방법에 의한 시험말뚝 재하시험)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Dong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.89-98
    • /
    • 2005
  • Preliminary pile load tests for the design of large diameter drilled shaft were performed on two of reduced scale(D=1370mm) test piles. The maximum loads of 2350 tonf in each direction were applied using bi-directional hydraulic jacks(Osterberg Cell) at toe. Neither of the test piles yielded in terms of skin friction and end bearing. Comparisons of the test results with several methods that estimate pile capacity show that the method of Horvath and Kenney(1979) for skin friction and Zhang and Einstein(1998) for end bearing were most appropriate for the site. The test results were directly applied to pile design in case RQD of skin and toe was larger than that of the test pile. It is desirable, therefore, to consider not only unconfined compression strength but also rock mass properties(i.e. TCR, RQD) for skin friction and end bearing evaluation in the future.

  • PDF

Tribological Wear Behavior of PTFE Impregnated with Cu Nano Particles (구리 나노 입자가 함침된 PTFE의 윤활 마모 거동)

  • Kim, S.Y.;Kim, E.B.;Q., Yoo;Ju, C.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.50-55
    • /
    • 2010
  • In order to investigate tribological effects of nano copper particles impregnated(CuN) on surface polytetrafluoroethylene(PTFE) on sealing wear and an experimental study was carried out to determine the wear behavior of copper nano-particles impregnation two kind thickness in super critical $CO_2$ liquid. Experimental results showed that the friction coefficients of CuN PTFE at the low sliding speed(0.44m/s) and the oil temperature ($60^{\circ}C$) were higher than that of virgin PTFE. And a thin nano copper particles impreganated thickness was formed on the surface in the PTFE and the specimen with this treatment has much better friction properties than the original one. Fortunately, at the high load(80 N) and the oil temperature, the friction coefficient of CuN PTFE was lower than that of virgin PTFE. This evidenced the load carrying capacity of CuN PTFE was much better than that of virgin PTFE under the high load condition(80 N) specially. Therefore, it can be concluded that the friction coefficient variation of CuN PTFE is very small but its wear rate decreases greatly with increase in sliding speed.

Characteristics of Stress-Displacement on Uplift Loaded Group Piles (인발력을 받는 무리말뚝의 응력-변위 특성)

  • Lee, Jun-Dae;Ahn, Byeong-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.152-157
    • /
    • 2005
  • This experimental study was devoted to investigate skin friction of H group piles with uplift loading conditions in granite soil under laboratory test. Model piles made of steel embedded in weathered granite soil were used in this study. Pile arrangements($2{\times}2,\;3{\times}3$), pile space(2D, 4D, 6D), and soil density($D_r=40%,\;80%$) were tested. The main results obtained from the model tests can be summarized as follows. The series of tests found that ultimate uplift load and displacement for group piles were increased as piles space ratio increases to $D_r=40%$ of soil density. In the relative density of $D_r=80%$, bearing capacity for group piles was greater than for single pile. In the relative density of $D_r=40%$, the theoretical value of skin friction for group piles was greater than practical value. In the relative density of $D_r=80%$, both theoretical and practical value of skin friction for group piles were increased as piles space ratio increases.

Experimental investigation of a new steel friction device with link element for seismic strengthening of structures

  • Papadopoulos, Panikos K.;Salonikios, Thomas N.;Dimitrakis, Stergios A.;Papadopoulos, Alkis P.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.487-504
    • /
    • 2013
  • In the present work a new friction device, with a set of single or double rotational friction flanges and a link element, is described and tested. The mechanism may be applied for the strengthening of existing r/c or steel buildings as well as in new constructed buildings. The device has selectable variable behavior in different levels of displacement and an interlock mechanism that is provided by the link element. The link element may be designed to lock at preselected level of displacement, offering in this way an extra safety reserve against strong earthquakes. A summary of the existing literature about other similar mechanisms is initially presented in this paper. The proposed mechanism is presented and described in details. Laboratory experiments are presented in detail and the resulted response that proves the efficiency of the mechanism at selectable levels of strength capacity is discussed. Drawings of the mechanism attached to a r/c frame with connection details are also included. Finally a dynamic analysis of two r/c frames, with and without the proposed mechanism attached, is performed and the resulted response is given. The main conclusion is that the proposed mechanism is a cheap and efficient devise for the improvement of the performance of new or existing framed buildings to seismic loads.