• 제목/요약/키워드: friction and wear behaviors

검색결과 96건 처리시간 0.023초

마찰속도와 마찰력의 변화에 따른 세라믹 용사 코팅재의 마모특성 (Wear Characteristics on Friction Velosity and Force of Plasma Sprayed Ceramic Coating Layer)

  • 김귀식;김성익
    • 동력기계공학회지
    • /
    • 제6권4호
    • /
    • pp.56-61
    • /
    • 2002
  • This study is to investigate the wear behaviors of thermally sprayed ceramic coating by a pin-on-disk wear testing machine. The test specimens were plasma sprayed TiO2 coating material on carbon steel substrate(S45C) with Ni-4.5%Al alloy bond coating. Wear characteristics, friction coefficient and wear rates, were conducted at the three kinds of loads and velosities. Wear environments were dry and lubrication friction. The friction coefficients of TiO2 coating specimen in dry friction were almost same according to increase the friction velocity. The wear rate increased when the friction force is high. In lubrication friction, the wear hardly occured and friction coefficient was about 0.1. The adhesiveness of TiO2 in lubrication friction is larger than that in dry one.

  • PDF

Friction and Wear Behaviors of WC-Co/WC-Co Pairs in Air

  • Hosokawa, H.;Nakajima, T.;Shimojima, K.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.629-630
    • /
    • 2006
  • To investigate sliding friction and wear behaviors of WC-Co/WC-Co pairs containing different WC grain sizes, the ball-on-disc test in air were carried out, where WC grain sizes a $0.5\;{\mu}m$ (F.G.) and $1.5\;{\mu}m$ (C.G.). The wear volume of F.G. pin for F.G. pin/C.G. disc is larger than that of F.G. pin for F.G. pin/F.G. disc due to higher friction coefficient, and the surfaces after wear test are richer in oxygen compared to those before test. Furthermore, the wear debris, which is composed of nona-scale grain, after the wear test are remarkably richer in oxygen than to those before test.

  • PDF

탄소와 구리의 마찰 및 마모에 관한 분자 동역학 시뮬레이션 (Molecular Dynamics Simulation of Friction and Wear Behavior Between Carbon and Copper)

  • 김광섭;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제20권2호
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, friction and wear behaviors between monocrystalline, defect-free copper and carbon on the atomic scale are investigated by using 2-dimensional molecular dynamics simulation. It is assumed that all interatomic forces are given by Morse potential. The deformation of carbon is assumed to be neglected and vacuum condition is also assumed. Average friction and normal forces for various surface conditions, various scratch speeds and scratch depths are obtained from simulations. Changes of wear behaviors for various scratch speeds and surface conditions are investigated by observing snapshots in scratch process. The effects of surface conditions, scratch speeds, and scratch depths on the friction force, normal force, and friction coefficient are also investigated.

6xxx계 알루미늄합금의 압출 금형용 SKD61 강재에 증착된 TiAlN, CrAlN 박막의 마찰.마모에 대한 연구 (A Study on the Friction and Wear Characteristic of TiAlN and CrAlN Coating on the SKD61 Extrusion Mold Steel for 6xxx Aluminum Alloy)

  • 김민석;고진현;김상호
    • 한국표면공학회지
    • /
    • 제43권6호
    • /
    • pp.278-282
    • /
    • 2010
  • In this research, the friction and wear characteristic behaviors of coating materials of TiAlN and CrAlN were investigated. The wear test was conducted in air and un-lubricated state using the reciprocating friction wear tester. Temperature were 50 and $120^{\circ}C$, and load were 3, 7, and 11 kgf for tests. By comparing the coefficient of friction and observing the wear microstructure, the friction and wear characteristic behaviors of TiAlN and CrAlN coating layers on SKD61 were investigated. The coefficient of friction of CrAlN coating was lower than that of TiAlN at all conditions. Therefore, CrAlN was suggested to be more advantageous coating than TiAlN for the extrusion mold of aluminum.

인공고관절 모사조건하에서의 탄소섬유 복합재료의 마찰 및 마모 특성 (Friction and wear properties of carbon fiber reinforced epoxy composite for the artificial hip joint application)

  • 송영석;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.239-241
    • /
    • 1999
  • Recently, the friction and wear behaviors of UHMWPE, ceramic and metal is being researched actively for the use as an artificial hip-joint. In this study, because of good wear properties of carbon fiber, we made experiments about the friction and wear of carbon fiber reinforced epoxy composite under the lubricative and the dry condition. The possibilities of carbon-carbon composite for the artificial hip joint application was studied from this results.

  • PDF

SEM 내부에 설치된 트라이보 시험기를 통한 금속 코팅의 실시간 마찰/마모 특성 분석 (Real Time Analysis of Friction/Wear Characteristics of Metal Coatings with a Tribo-tester Installed in an SEM)

  • 김해진;김대은;김창래
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.318-324
    • /
    • 2018
  • This study aims to visualize the friction and wear behaviors of metal coatings in real time. The main mechanism of wear is identified by observing all the processes in which wear occurs. The friction coefficients of the moments are monitored to confirm the relationship between the friction and wear characteristics of the coating. Thin Ag coatings, which are several hundred nanometers in thickness, are prepared by depositing Ag atoms on silicon substrates through a sputtering method. A pin-on-disk-type tribo-tester is installed inside a scanning electron microscope (SEM) to evaluate the friction and wear characteristics of the Ag coating. A fine diamond pin is brought into contact with the Ag coating surface, and a load of 20 mN is applied. The contact pressure is calculated to be approximately 15 GPa. The moments of wear caused by the sliding motion are visualized, and the changes in the friction characteristics according to each step of wear generation are monitored. The Ag coating can be confirmed to exhibit a wear phenomenon by gradually peeling off the surface of the coating on observing the friction and wear characteristics of the coating in real time inside the SEM. This can be explained by a typical plowing-type wear mechanism.

알루미늄 압출용 금형의 내마모성향상을 위한 TiN, CrN 코팅 (TiN and CrN Coating for the Increase of Abrasive Resistance of Extrusion Mold for Aluminium)

  • 김민석;강승민;김동원;김상호
    • 한국표면공학회지
    • /
    • 제42권6호
    • /
    • pp.272-275
    • /
    • 2009
  • The purpose of this study is to show the friction and wear characteristic behaviors of TiN and CrN coated SKD61 which is applied to Al 6xxx extrusion mold material. The friction and wear characteristic behaviors of both coating layers were investigated by the reciprocating friction wear tester under atmospheric pressure and un-lubricated state. The processing parameters in this study were temperature (50 and $120^{\circ}C$) and load (3, 5, and 11 kgf). This study was carried out while comparing the coefficient of friction and microstructure of TiN and CrN coating layers on SKD61. The coefficient of friction of CrN became lower than that of TiN at all conditions. Therefore, CrN was suggested to be more advantageous than TiN for extrusion mold.

하이브리드 코팅시스템에 의해 제조된 Ti-Si-N 코팅막의 상대재에 대한 마모거동 연구 (Tribological Behaviors Against Counterpart Materials of Ti-Si-N Coating Layers Prepared by a Hybrid Coating System)

  • 박옥남;박종현;윤석영;권식철;김광호
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.116-121
    • /
    • 2003
  • Ti-Si-N coating layers were deposited onto WC-Co substrates by a hybrid system of arc ion plating (AIP) and sputtering techniques. The tribological behaviors of Ti-Si-N coating layers with various Si contents were investigated by the dry sliding wear experiments, which were conducted at three different sliding speeds, 0.1, 0.3, 0.5 m/s, against the steel and alumina balls. In the case of steel ball, the average friction coefficient slightly decreased with increasing the sliding speed regardless of Si content due to adhesive wear behavior between coating layer and steel ball. At constant sliding speed, the average friction coefficient decreased with increase of Si content. On the contrary, in the case of alumina ball, the average friction coefficient increased with increasing the sliding speed regardless of Si content, indicating that the abrasive wear behavior was more dominant when the coating layers slide against alumina ball. Through these experimental results, it was found that the tribological behaviors of Ti-Si-N coating layers were effected by factors such as Si content, sliding speed, and kinds of counterpart materials rather than the hardness of coating layer.

Effects of oil absorption on the wear behaviors of carbon/epoxy woven composites

  • Lee, Jae-H.;Lee, Jae-S.;Rhee, Kyong-Y.
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.249-251
    • /
    • 2011
  • Carbon/epoxy woven composites are prominent wear-resistant materials due to the strength, stiffness, and thermal conductivity of carbon fabric. In this study, the effect of oilabsorption on the wear behaviors of carbon/epoxy woven composites was investigated. Wear tests were performed on dry and fully oil-absorbed carbon/epoxy woven composites. The worn surfaces of the test specimens were examined via scanning electron microscopy to investigate the wear mechanisms of oil-absorbed carbon/epoxy woven composites. It was found that the oil absorption rate was 0.14% when the carbon/epoxy woven composites were fully saturated. In addition, the wear properties of the carbon/epoxy woven composites were found to be affected by oilabsorption. Specifically, the friction coefficients of dry and oil-absorbed carbon/epoxy woven composites were 0.25-0.30 and 0.55-0.6, respectively. The wear loss of the oilabsorbed carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$, while that of the dry carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$. SEM results revealed that the higher friction coefficient and wear loss of the oil-absorbed carbon/epoxy woven composites can be attributed to the existence of broken and randomly dispersed fibers due to the weak adhesion forces between the carbon fibers and the epoxy matrix.

콜타르 핏치를 이용하여 제조된 탄소/탄소 복합재의 관성제동 마찰특성 (The Inertia Friction properties of the Carbon/Carbon Composites Manufactured Using a Coal-tar Pitch)

  • 이진용;서동수;임연수;이승구;박종규
    • 한국세라믹학회지
    • /
    • 제35권7호
    • /
    • pp.740-748
    • /
    • 1998
  • The inertia friction properties of C/C composites manufactured by the processes of pressure and at-mospheric carbonizaton with a commerciallized and two kinds of modified coal-tar pitch as a matrix pre-cursor were investigated. The modifications of a pitch such as the introduction of mesophase and the ad-dition of sulphur into a raw pitch were not effective for a impregnation efficiency conducted in a vacuum and at the same time in a pressure of 5kg/cm2 due to the increase of the pitch viscosity. There was not a difference in the densification increment between the pitch modifications however it was revealed that a pressure carbonization was more advantageous than an atmospheric in the densification and the formation of anisotropic carbon matrix. The friction and wear propertis of C/C having higher degree of matrix cry-stallization higher density and hardness of friction surface showed superiority. As the braking energy was increased the friction coefficients were decreased and reached almost same level at the high kinetic energy of 99.6kJ. The wear trends at 99.6kJ were different from the behaviors of friction ceofficient under the same energy in which an oxidation wear is being considered along with a mechnical wear although the wear rates were almost similar to the friction coefficient at the low energy.

  • PDF