• Title/Summary/Keyword: freshwater environments

Search Result 129, Processing Time 0.023 seconds

Ecosysteme de I′Etang de Berre (Mediterranee nord-occidentale) : Caracteres Generales Physiques, Chimiques et Biologiques

  • Kim, Ki-Tai
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Climatological, hydrological and planktonical research studies, measurements of primary production and photosynthetic efficiency from December 1976 to December 1978 have been carried out in two brackish lakes: Lake Etang de Berre and Lake Etang de Vaine located in the French Mediterranean coast, in the region of Carry-le-Rouet located on the north-west Mediterranean near Marseilles, and in fresh water inflows from 4 Rivers (Touloubre, Durance, Arc, Durancole) to Lake Etang de Berre. Physico-chemical parameters were measured for this study: water temperature, salinity, density, pH, alcalinity, dissolved oxygen (% saturation), phosphate, nitrate, nitrite, silicate etc. Diverse biological parameters were also studied: photosynthetic pigments, phaeopigments, specific composition and biomass of phytoplankton, primary pelagic production etc. Climatical factors were studied: air-temperature, solar-radiation, evaporation, direction (including strength) of winds, precipitation and freshwater volume of the four rivers. The changes in Lake ‘Etang de Berre’ ecosystem depend on the quality of the water in the Durance River, and on the effects of seawater near the entrance of the Caronte Canal. The water quality of the lake varies horizontally and vertically as a result of atmospheric phenomena, maritime currents and tides. The distribution of water temperatures is generally heterogeneous. Southeasterly winds and the Northeasterly Mistral wind are important in the origins of circulated and mixed water masses. These winds are both frequent and strong. They have, as a result, a great effect on the water environment of Lake Etang de Berre. In theory, the annual precipitation in this region is well over eight times the water mass of the lake. The water of the Durance River flows into Lake Etang de Berre through the EDF Canal, amounting to 90% of the precipitation. However, reduction of rainfall in dry seasons has a serious effect on the hydrological characteristics of the lake. The temperature in the winter is partially caused by the low temperature of fresh water, particularly that of the Durance River. The hydrological season of fresh and brackish water is about one month ahead of the hydrological season of sea water in its vicinity. The salinity of Lake Etang de Berre runs approximately 3$\textperthousand$, except at lower levels and near the entrance to the Caronte Canal. However, when the volume of the Durance River water is reduced in the summer and fall, the salinity rises to 15$\textperthousand$. In the lake, the ratio of fresh water to sea water is six to one (6:1). The large quantities of seston conveyed by rivers, particularly the Durance diversion, strongly reduce the transparency in the brackish waters. Although the amount of sunshine is also notable, transparency is slight because of the large amount of seston, carried chiefly by Tripton in the fresh water of the Durance River. Therefore, photosynthesis generally occurs only in the surface layer. The transparency progressively increases from freshwater to open seawater, as mineral particles sink to the bottom (about 1.7kg $m^{-2}a^{-1}$ on the average in brackish lakes). The concentration of dissolved oxygen and the rate of oxygen saturation in seawater (Carry-le-Rouet) ranged from 5.0 to 6.0 $m\ell$ㆍ.$1^{-1}$, and from 95 to 105%, respectively. The amount of dissolved oxygen in Etang de Berre oscillated between 2.9 and 268.3%. The monographs of phosphate, nitrate, nitrite and silicate were published as a part of a study on the ecology of phytoplankton in these environments. Horizontal and vertical distributions of these nutriments were studied in detail. The recent diversion of the Durance River into Lake Etang de Berre has effected a fundamental change in this formerly marine environment, which has had a great impact in its plankton populations. A total of 182 taxa were identified, including 111 Bacillariophyceae, 44 Chlorophyceae, and 15 Cyanophyceae. The most abundant species are small freshwater algae, mainly Chlorophyceae. The average density is about $10^{8}$ cells $1^{-1}$ in Lake Etang de Berre, and about double that amount in Lake Etang de Vaine. Differences in phytoplankton abundance and composition at the various stations or at various depths are slight. Cell biovolume V (equivalent to true biomass), plasma volume VP (‘useful’ biomass) and, simultaneously. the cell surface area S and S/V ratio through the measurement of cell dimensions were computed as the parameters of phytoplankton productivity and metabolism. Pigment concentrations are generally very high on account of phytoplankton blooms by Cyanophyceae, Chlorophyceae and Cryptophyceae. On the other hand, in freshwaters and marine waters, pigment concentrations are comparatively low and stable, showing slight annual variation. The variations of ATP concentration were closely related to those of chlorophyll a and phytoplankton blooms only in marine waters. The carbon uptake rates ranged between 38 and 1091 mg$Cm^{-2}d^{-1}$, with an average surface value of 256 mg; water-column carbon-uptake rates ranged between 240 and 2310 mg$Cm^{-2}d^{-1}$, with an average of 810, representing 290 mg$Cm^{-2}$, per year 45 000 tons per year of photosynthetized carbon for the whole lake. Gross photosynthetic production measured by the method of Ryther was studied over a 2-year period. The values obtained from marine water(Carry-le-Rouet) ranged from 23 to 2 337 mg$Cm^{-2}d^{-1}$, with a weighted average of 319, representing about 110 gCm$^{-2}$ per year. The values in brakish water (Etang de Berre) ranged from 14 to 1778 mg$Cm^{-2}d^{-1}$, with a weighted average of 682, representing 250 mg$Cm^{-2}$ per year and 38 400 tons per year of photosynthesized carbon for the whole lake.

Spatio- and temporal patterns of benthic environment and macrobenthos community on subtidal soft-bottom in Chonsu Bay, Korea (천수만 조하대 연성저질의 저서환경과 저서동물 군집의 시${\cdot}$공간적 양상)

  • PARK Heung-Sik;LIM Hyun-Sig;HONG Jae-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.262-271
    • /
    • 2000
  • This study was carried out to clarify the spatial and temporal patterns of benthic environments and macrobenthos on the subtidal soft-bottom in Chonsu Bay. Seasonal surface water temperature was similar to the bottom layer, but freshwater discharges into the outlets dereased the surface salinity around the dyke in summer. Bottom dissolved oxygen was decreased deeply around the dyke and created the de-oxygenated layer during summer. Sediment grain size was consisted of finer at the neighboring of the dyke than the mouth of the bay. Organic matters including the sediment were decreased at the mouth of the bay. A total of 311 species ($769\;ind./m^2$) were identified. Polychaetes were the most abundant faunal group in the number of species and densities. The number of species revealed the spatial patterns that it was higher in the mouth of the bay, and their densities showed seasonal changes by mass recruitment occurred at the most of the area in summer, At this time, opportunistic species, Lumbrineris iongifolia and Theora fragilis, were also recruited massively. Chonsu Bay were classified into five station groups by the cluster analysis. The dominant species around the dyke were composed to opportunistic species, those in middle area were Sternaspis scutata, Paraplionospio pinnata, and those in the mouth of the bay were Mediomastus californiensis, Nephtys polybranchia. Seasonal fluctuations and spatial difference of environments seem to have influenced to the species compositions and affected to the stability of benthic ecosystems spatial-temporally In Chonsu nay.

  • PDF

Introduction of a New Method for Total Organic Carbon and Total Nitrogen Stable Isotope Analysis of Dissolved Organic Matter in Aquatic Environments (수환경 내 용존성 유기물질의 총 유기탄소 및 총 질소 안정동위원소 신규 분석법 소개)

  • Si-yeong Park;Heeju Choi;Seoyeon Hong;Bo Ra Lim;Seoyeong Choi;Eun-Mi Kim;Yujeong Huh;Soohyung Lee;Min-Seob Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.339-347
    • /
    • 2023
  • Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.

(Technical note) Pollen and dinoflagellate cyst assemblages from the surface sediments of the lower reach of the Jujin Stream ((기술노트) 주진천 하류역의 퇴적물에서 산출되는 화분과 와편모조류 군집 특성)

  • Sangheon Yi;Jin-Young Lee;Min Han;Jaesoo Lim;Chang-Pyo Jun
    • The Korean Journal of Quaternary Research
    • /
    • v.33 no.1_2
    • /
    • pp.59-68
    • /
    • 2021
  • The maximum upper limit of seawater inflow can be recognized by the acid-resistant dinoflagellate cysts and salt-marsh pollen encountered from surface samples in the lower reach of Jujin Stream facing Gomso Bay. Based on their relative yield ratio, the downstream area of Jujin Stream could be further subdivided into coastal marine, brackish-upper limit brackish, and freshwater environments. The abundance of dinoflagellate cysts from JJR-41 to JJR-36 sites reflects that this area is a coastal marine. In the section between JJR-35 and JJR-5 sites, dinoflagellate cysts associated with pollen derived from riparian or salt-marsh (e.g., reeds and sedges) appear to reflect the brackish environments. It may be indicated that dinoflagellate cysts appear up to the JJR-4 site, which is the maximum upper limit where seawater flows up to this point at high tide. This analysis is relatively well corresponding to the hypothetical inundation map showing the maximum flooding area where seawater can flow at high tide.

Sedimentary facies and micropaleontological study of tidal sediments off the Mankyung-Dongjin River estuary, west coast of Korea. (한국 서해 만경강-동진강 하구역 및 연안역 조간대 퇴적층의 퇴적상과 미고생물학 적 연구)

  • 이영길;박용안
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.77-90
    • /
    • 1995
  • The sedimentary environments and biostratigrapy of the tidal sediments off the Mankyung-Dongjin River estuary were studied based on sedimentary facies and diatom assemblage analysis. Sediment facies from the five vibracores are mainly clay, silt, and sand facies. The clay and silty sediment facies are more dominant than the sandy facies, and contain diatom frustules. The frequency of the diatom frustules are rate to common, but not found in sandy sediment facies. Bigeneric structures such as burrow and non-bigeneric primary sedimentary structures such as laminated sand and mud or silt and mud couplets, flaser bedding, ripple-cross lamination are found in several stratigraphic levels of the sedimentary sequences. A total of 219 species and varieties, belonging to 61 genera has been identified in the present study. Among them, paralia sulcata is the most abundant species about 30 to 50% of the total diatom frustules. Another predominant species are Cyclotella striata. Thalassionema nitzschioides. Actinoptychus undulatus. Delphineis surirella, Raphoneis amphiceros. Most of the diatoms occurred in this study area are marine, marine-brackish water, and brackish water species, and are benthic and tychopelagic or meroplanktonic species. Also, most of the species are coastal to littoral and littoral to inner neritic species. The occurrences of freshwater species, about 1 to 5% is higher than that of the Namyang Bay tidal sediments. The ecological properties of the diatoms occurred in the study area and primary sedimentary structure such as flaser bedding ripple cross bedding indicate that the deposits are formed under coastal or littoral to subeditorial environments such as tidal zone which was subjected to the influenced of stream water and was more strongly influenced by temperate to warm water than cold water. The sedimentary environments have not been changed distinctively during the time of deposition. The vertical distribution pattern of diatoms in the study area is studied by Q-mode cluster Analysis using spss/pc+ (ver.4.0). The results show that the three cores (GE-3, GE-11, GE-12) are divided into two diatom assemblages, respectively. Biostratigraphic correlation using the data of Q-mode Cluster Analysis are attempt in this study.

  • PDF

Fish Community Structure and Biodiversity of the Korean Peninsula Estuaries (한반도 하구의 어류군집 구조 및 다양성)

  • Park, Sang-Hyeon;Baek, Seung-Ho;Kim, Jeong-Hui;Kim, Dong-Hwan;Jang, Min-Ho;Won, Doo-Hee;Park, Bae-Kyung;Moon, Jeong-Suk
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.35-48
    • /
    • 2022
  • Fish assemblage of total 325 of Korean peninsula estuaries were surveyed to analyze the characteristics of community structure and diversity by sea areas for three years from 2016 to 2018. The scale (stream width) of Korean estuaries were various (14~3,356 m), and 68.9% of all estuaries showed salinity of less than 2 psu. Total 149 species classified into 52 families of fish were identified, and the dominant and sub-dominant species were Tribolodon hakonensis (relative abundance, RA, 12.5%) and Mugil cephalus (RA, 9.5%), respectively. The estuary of the Korean Peninsula had different physical and chemical habitat environments depending on the sea area, and accordingly, fish community structure also showed statistically significant differences (PERMANOVA, Pseudo-F=26.69, P=0.001). In addition, the NMDS (nonmetric multidimensional scaling) results showed the patterns that indicating fish community difference by sea areas, even though low community similarity within sea area (SIMPER, 21.79~26.39%). The estuaries of east sea areas were distinguished from the others in the aspects of which, the higher importance of migratory fishes and endangered species, and that of brackish species were characterized at south sea estuaries. However, the estuaries of west sea showed higher importance of species that have a relation with freshwater (primary freshwater species, exotic species), which is the result that associating with the lower salinity of west sea estuaries because of the high ratio of closed estuaries(78.2%). The SIMPER analysis, scoring the contribution rates of species to community similarity, also showed results corresponding to the tendency of different fish community structures according to each sea area. So far, In Korea, most studies on fish communities in estuaries have been conducted in a single estuary unit, which made it difficult to understand the characteristics of estuaries at the national level, which are prerequisite for policy establishment. In present study, we are providing fish community structure characteristics of Korean estuaries in a national scale, including diversity index, habitat salinity ranges of major species, distribution of migratory species. We are expecting that our results could be utilized as baseline information for establishing management policies or further study of Korean estuaries.

Modeling the Fate and Transport of Arsenic in Wetland Sediments (습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형)

  • Park, Seok-Soon;Wang, Soo-Kyun
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.434-446
    • /
    • 2003
  • The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.

Oceanographic Condition of the Coastal Area between Narodo Is. and Solido Is. in the Southern Sea of Korea and Its Relation to the Disappearance of Red-Tide Observed in Summer 1998 (한국 남해 나로도와 소리도 사이 해역의 1998년 하계 해황 및 적조소멸과의 관계)

  • Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.49-62
    • /
    • 2001
  • Hydrographic surveys were carried out seven times during May 31, 1998 and September 24, 1998 in order to study the physical environments of the coastal area between Narodo Is. and Sorido Is. in the southern sea of Korea (the South Sea) where the occurrence of Cochlodinium polykrikoides red tide is frequently observed in summer. Temperature and salinity of the water column from the surface to the depth of 30 m exhibit large seasonal variations. Mean temperature of the water column increased by 6 and mean salinity of the water column decreased by 2.71 psu during the observation period. Both the freshwater supplied from the adjacent land and the precipitation over the study area cannot account for the observed salinity variations. The influx of the low salinity water from the offshore area is considered to be the main cause for the observed salinity changes. Surface salinity in the study area shows different spatial distribution in the period of outbreaking, mid-stage and disappearance of the red tide. Especially, salinity was abruptly lowered at the stage of disappearance of red tide as compared to salinity of the previous observation period. Vertical structure of water properties also became vertically homogeneous at the disappearance stage, while it was highly stratified in the previous observation. Such changes can only be explained by the inflow of low salinity water from the offshore, which is considered as the most possible cause for the disappearance of the red tide in the study area. This study suggests that exchanges of water, and chemical and biological factors between coastal areas and of shore area in the South Sea need to be studied in association with the general circulation of the South Sea in order for the better understanding of the occurrence and disappearance of the red tide in the coastal area of the South Sea.

  • PDF

Patterning Zooplankton Dynamics in the Regulated Nakdong River by Means of the Self-Organizing Map (자가조직화 지도 방법을 이용한 조절된 낙동강 내 동물플랑크톤 역동성의 모형화)

  • Kim, Dong-Kyun;Joo, Gea-Jae;Jeong, Kwang-Seuk;Chang, Kwang-Hyson;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.52-61
    • /
    • 2006
  • The aim of this study was to analyze the seasonal patterns of zooplankton community dynamics in the lower Nakdong River (Mulgum, RK; river kilometer; 27 km from the estuarine barrage), with a Self-Organizing Map (SOM) based on weekly sampled data collected over ten years(1994 ${\sim}$ 2003). It is well known that zooplankton groups had important role in the food web of freshwater ecosystems, however, less attention has been paid to this group compared with other community constituents. A non-linear patterning algorithm of the SOM was applied to discover the relationship among river environments and zooplankton community dynamics. Limnological variables (water temperature, dissolved oxygen, pH , Secchi transparency, turbidity, chlorophyll a, discharge, etc.) were taken into account to implement patterning seasonal changes of zooplankton community structures (consisting of rotifers, cladocerans and copepods). The trained SOM model allocated zooplankton on the map plane with limnological parameters. Three zooplankton groups had high similarities to one another in their changing seasonal patterns, Among the limnological variables, water temporature was highly related to the zooplankton community dynamics (especially for cladocerans). The SOM model illustrated the suppression of zooplankton due to the increased river discharge, particularly in summer. Chlorophyll a concentrations were separated from zooplankton data set on the map plane, which would intimate the herbivorous activity of dominant grazers. This study introduces the zooplankton dynamics associated with limnological parameters using a nonlinear method, and the information will be useful for managing the river ecosystem, with respect to the food web interactions.

Modern Sedimentary Environments Within the Gogunsan Archipelago (고군산군도 내측해역의 현생퇴적환경)

  • Lee, Hee-Jun;Kim, Min-Ji;Kim, Tae-Kyung
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.519-536
    • /
    • 2008
  • The relatively tranquil area within the Gogunsan Archipelago was for the first time investigated preliminarily with respect to modern sedimentological processes in association with the emplacement of the Saemangeum Dyke. Basic sedimentological observations, bathymetry and surface sediments were performed twice during 2006-2008 to compare the results and elaborate changes during that period of time. In addition, sediment dynamical observations were carried out with latest measuring equipment along two transects crossing the entrances of the archipelago, including 12-hour onboard measurements of current, suspended sediments, temperature, and salinity. This dataset was used to reveal hydrodynamic characteristics for spring season April-May and to estimate the direction and relative magnitude of the net flux of suspended sediments. There occurred three depositional areas (A to C) within the archipelago, where sediment texture was also changed. In area A, around Yami Island and the dyke, and area B, in the center of the archipelago, surface sediments became coarsened over the two-year period; sand content increased 5% at the expense of silt content in the former, whereas silt content increased 3% at the expense of clay content in the latter. By comparison, area C in the western entrance of the archipelago shows a textural trend of fining with more silt and clay (combined increase of 5%) at the expense of sand content. The accumulation of sediments in areas A and B is attributable to the sand and silt resuspended from the seabed sediments off sector 4 of the dyke during the winter. The origin of the fine materials depositing on area C is uncertain at present, although suspended sediments moving offshore around the archipelago may be one of the most likely candidates for the source. The temperature of seawater increased rapidly from $9-10^{\circ}C$ in April to $14-16^{\circ}C$ in May, whereas salinity remained more or less constant at 31-32%o during the two months. Both of these parameters showed little variations with depth through a tidal cycle, suggesting good mixing of seawater without any help of significant waves. The consistency of salinity during a tidal cycle also indicates no insignificant effects of freshwater from the rivers Mangyung and Donjin emitting through the opening gap near Sinsi Island. The suspended sediment concentrations were higher at the entrance between Sunyu and Sinsi islands than at the entrance between Hoenggyong and Sinsi islands, ranging from 20 and 30 mg/l and from 5 and 15 mg/l, respectively at the sea surface. Although tidal currents were variable across a transect between Sunyu and Sinsi islands, the currents across the entrance between Hoenggyong and Sinsi islands flowed consistently in the same direction all over the transect during a tidal cycle. The estimation of net flux of suspended sediments indicates that suspended sediments are transferred to the Gogunsan Archipelago mainly through a relatively deep trough adjacent to Sinsi Island toward the shallow area around Yami Island and the dyke.