• Title/Summary/Keyword: fresh weights

Search Result 332, Processing Time 0.024 seconds

Effect of Organic Matter Content in Soil Treated with Radionuclides Cesium on the Growth of Chinese Cabbage (방사성 핵종 CS 처리된 토양에 유기물 함량이 배추의 생육에 미치는 영향)

  • Yeon Ju Choi;Eun Young Bae;Sang Rim Kim;Mohammad Faraaz Ahmed;Jum-Soon Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.9
    • /
    • pp.675-685
    • /
    • 2024
  • This study aimed to analyze the effects of cesium (Cs) treatment concentrations and organic matter on the growth of Chinese cabbage plants. The growth responses of cabbage to the Cs treatment varied depending on the concentration of Cs and the organic matter content in the soil. Higher concentrations of Cs in the soil presented a detrimental effect on cabbage growth. Specifically, increased Cs levels led to a reduction in leaf number, leaf area, chlorophyll content, and fresh and dry weights. However, an increase in the soil organic matter content positively affected the fresh and dry weights. These trends were particularly pronounced in Chinese cabbage plants grown for 80 days after treatment. Soil organic matter proved to effectively mitigate the negative effects of Cs on plant growth. Incorporating organic matter into Cs-contaminated soils can, therefore, enhance the immobilization of radioactive isotopes and contribute to the stabilization of contaminated soils, making it a useful strategy for managing radioactive contamination.

Growth Model of Common Ice Plant (Mesembryanthemum crystallinum L.) Using Expolinear Functions in a Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 선형 지수 함수를 이용한 Common Ice Plant의 생육 모델)

  • Cha, Mi-Kyung;Kim, Ju-Sung;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.493-498
    • /
    • 2014
  • The objective of this study was to make growth and yield models for common ice plant (Mesembryanthemum crystallinum L.) using expolinear functional equations in a closed-type plant production system. Three-band radiation type fluorescent lamps with a 12-hours photoperiod were used, and the light intensity was $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Nutrient film systems with three layers were used for plant growth. Environmental conditions, such as air temperature, relative humidity and $CO_2$ concentration were controlled by an ON/OFF operation. Leaf area, shoot fresh and dry weights, light use efficiency of common ice plant as function of days after transplanting, accumulative temperature and accumulative radiation were analyzed. Leaf area, shoot fresh and dry weights per area were described using an expolinear equation. A linear relationship between shoot dry and fresh weights was observed. Light use efficiency of common ice plant was $3.3g{\cdot}MJ^{-1}$ at 30 days after transplanting. It is concluded that the expolinear growth model can be a useful tool for quantifying the growth and yield of common ice plant in a closed plant production system.

Effect of Seed Size on Seed Germination and Growth Characteristics in Safflower (Carthamus tinctorius L.) (홍화의 종자 크기별 발아 및 생장특성 분석)

  • Lim, Jung Dae;Park, Hae Il;An, Tae Jin;Lim, Ju Jin;Kim, Sung Hyop;Yoo, Bo Ra;Kim, Eun Hye;Chung, Ill Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.6
    • /
    • pp.415-420
    • /
    • 2012
  • In order to evaluate the effect of seed weight on different aspect of safflower (Carthamus tinctorius L.) seed germination and growth characteristics. Quantity of sinapine leaked from seed was greater as the viability of seeds was dropped by the time elapsed of seed aging model and long storage condition in safflower (Carthamus tinctorius L.). The cultivar of safflower was Jin-Sun and the seeds that are separated to three different weights of small, middle, and large were used in this experiment. Large seeds revealed the highest germination percent, coleoptiles fresh weight, coleoptiles dry weight, radicle fresh weight and 1000 seed weights than other seed weight. Seed weight had little effect on yield while seed number exerted a positive influence. Interestingly, yield per plant and its major components, number of capsules and capsule weights, revealed a negligible relationship with oil content.

Effects of $\textrm{CO}_2$ Enrichment During Seedling Stage on the Effectiveness of $\textrm{CO}_2$ Enrichment after Transplanting in Leafy Vegetables (엽채류 육묘시 $\textrm{CO}_2$ 시용이 정식 후 $\textrm{CO}_2$ 시용 효과에 미치는 영향)

  • 김일섭;신석범;전익조
    • Journal of Bio-Environment Control
    • /
    • v.11 no.1
    • /
    • pp.35-39
    • /
    • 2002
  • This study was conducted to investigate the effect of early $CO_2$ enrichment during seedling stage on long-term $CO_2$ enrichment after transplanting in the culture of pat-choi (Brassica campesris L), spinach (Spinacia oeracea L.), and leaf lettuce (Lactuca saliva L). During seedling stage, $CO_2$enrichment had significantly higher fresh and dry weight and leaf area of the top parts (above ground) of all three plant species than the control (no $CO_2$ enrichment). About 53%, 70% , and 40% increase in fresh weight of the top parts of pak-choi, spinach, and leaf lettuce were observed, respectively. Also, in seedling stage, dry weights of roots of spinach and leaf lettuce were significantly increased by early $CO_2$ enrichment. Relative fresh weight increment, compared with fresh weight of the control, in the top parts of roll three plants showed the highest values in 10 days after $CO_2$ enrichment treatment. In the long-term $CO_2$ enrichment experiment, early $CO_2$ enrichmented plants had 20% greater leaf area than the control in all three leafy vegetables. Fresh and dry weights of top parts of early $CO_2$-treated plants were also increased from 10 to 20%, as compared with the control plants. However, these increasement rates in the long-term $CO_2$ enrichment were lower than those seedling stage, which had 30-60% increment-rates. After transplanting, photosynthetic rate of each leafy vegetable in the control treatment slowly decreased, but those rates of early $CO_2$ enriched plants rapidly decreased.

Optimal Planting Density on Growth and Quality Characteristics of Kohlrabi in a Closed-type Plant Factory System (완전제어형 식물공장에서 콜라비의 생육과 품질에 대한 적정 재식밀도)

  • Uoon, Chan-Il;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.104-109
    • /
    • 2019
  • The crops recommended for the plant factory system are diverse. The importance of planting density in the plant factory is being recognized. The objective of this study was to determine the optimal planting density for growth and quality of kohlrabi in a closed-type plant factory system. The kohlrabi was grown under fluorescent lamps and nutrient film technique system. The growth and quality of kohlrabi were investigated under four different planting densities ($22plants/m^2(15{\times}30cm)$, $27plants/m^2(15{\times}25cm)$, and $33plants/m^2(15{\times}20cm)$). There were no significant interactions between Shoot fresh and dry weights per plant or bulb stem fresh and dry weights per plant and planting density. Shoot fresh and dry weight per area or bulb stem fresh and dry weight per area were the highest at $33plants/m^2$. There were no significant interactions between plant height, leaf area, photosynthetic rate, hardness, and chlorophyll content and planting density. Significant differences in Bulb stem height and diameter, and brix were observed. Bulb stem height and diameter and brix of kohlrabi were the highest at $22plants/m^2$. Based on our results, we conclude that the optimal planting density is $33plants/m^2$ for growth of kohlrabi, however, the optimal planting density is $22plants/m^2$ for quality of kohlrabi in a closed-type plant factory system.

Washing Effect of Marketing Mungbean Sprouts on Morphological Characters and their Color (출하용 숙주나물의 세척 유무에 따른 형태 및 색상 변화)

  • Hong, Dong-Oh;Jeon, Seung-Ho;Lee, Chang-Woo;Kim, Hong-Young;Kang, Jin-Ho
    • Korean Journal of Plant Resources
    • /
    • v.21 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • Traditionally mungbean(Vigna radiata L.) sprouts has been eaten soon after washing. The study was carried out to measure the effect of washing before packaging on morphological characters and color of mungbean sprouts. The seeds of cv. Zhong Lu 1 were soaked in 50 ppm BA solution immediately before 4 hour aeration and then cultured for 6 days. The sprouts were washed immediately before packaged with PE envelops or not, and then stored 5 days at $8^{\circ}C$. Their morphological characters, fresh and dry weights, and colors were measured everyday. Compared to washed, nonwashed sprouts had more lateral roots although the two sprouts did nearly same in hypocotyl and root lengths, hypocotyl diameter, fresh and dry weights. Non-washed sprouts, moreover, showed higher brightness in hypocotyl and root and cutting resistance in hypocotyl although there were not significant differences in color a and b, meaning that the latter ones were more rapidly changed during their storage. In non-washed sprouts, number of lateral roots, hypocotyl length and diameter, total fresh and dry weights were nearly same up to 3 days and afterward were declined. Brightness and color b of hypocotyl were decreased with increased storage period although cutting resistance of hypocotyl was since 3 days after storage.

Effects of Aeration Period and Temperature after Imbibition on Growth of Mungbean Sprouts (침종 이후의 Aeration 기간과 온도에 따른 숙주나물의 생장)

  • Kang Jin Ho;Ryu Yeong Seop;Yoon Soo Young;Jeon Seung Ho;Cho Sook Hyon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.472-476
    • /
    • 2004
  • Lateral roots formed on mungbean sprouts should lower their quality. The study was carried out to clarify the effects of aeration periods (AP; 1, 2, 3, and 4 hours) and temperature (AT; 20, 30, and $40^{\circ}C$) after 5 hour seed imbibition into 50 ppm benzyladenopurine (BA) solution on growth and morphological characters of mungbean (cv. Keumseongnogdu, Owoolnogdu and Zhong Lu 1) sprouts. On the 6th day, the mungbean sprouts were sorted by 4 categories on the base of hypocotyl lengths; > 7cm, 4 to 7cm, < 4cm, and non-germination to calculate their composition rates, number of lateral roots, lengths of hypocotyl and root, diameters at middle and upper parts of hypocotyl, fraction fresh and dry weights were measured. AP more affected growth of the cultivars than AT showing little effect on them. In the composition rate of the above 4 categories, cv. Zhong Lu 1 had the highest rate in longer than 7cm but nearly the same rate in AP treatments. Rates of longer than 4cm hypocotyls in cv. Keumseongnogdu, Owoolnogdu were increased with longer AP but their rates of shorter than 4cm showed reverse response to the former. Formation rate and number of lateral roots per sprout were decreased with longer AP, showing more severe decrement when delayed 3 to 4 hour AP. Upper part of hypocotyls and roots were more thickened and shortened in longer AP, respectively. Total fresh weights had no significant difference between AP treatments while hypocotyl fresh weights were increased with longer AP. It was concluded that in mungbean sprout culture aeration from BA treatment to the first watering permitted at least 4 hours.

Effect of Watering Methods on Growth of Soybean Sprout and Culture Temperature (관수방식에 따른 콩나물의 생장과 재배용기 내의 온도 변화)

  • Jeon Byong-Sam;Hong Dong-Oh;Kim Hong-Young;Lee Chang-Woo;Kang Jin-Ho
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.344-347
    • /
    • 2006
  • Watering methods for soybean sprouts could be mainly divided into two groups of overspraying and underwatering. The study was carried out to determine the effect of water supplying method on growth, morphological characteristics, colour and cutting resistance of soybean (cv. Junjery) sprouts and culture temperatures. The morphological characters, fresh and dry weights were measured on the 6th day after their culture, but daily mean temperatures inside the plastic culture boxes were measured by data-loggers. Lateral roots were more formed in the underwatering method (UM) than in the overspraying method (OM). Although their total lengths of both methods were nearly same, OM had longer hypocotyl but UM did longer root than the other. Middle and upper parts of hypocotyl were more thickened in UM than in OM. UM showed more hypocotyl fresh and dry weights than OM. There was, however, no significant difference between the two methods in cotyledon, root, total fresh and dry weights although the culture temperature was higher in OM than in UM.

Influence of Physico.Chemical Properties of Root Substrates on the Growth of 'Maehyang' Strawberry Daughter Plants Produced by Bag Culture of Stock Plants (포트 충전용 상토의 물리.화학성이 플라스틱 백 재배를 통해 발생한 '매향' 딸기의 자묘 생육에 미치는 영향)

  • Choi, Jong-Myung;Park, Ji-Young;Ko, Kwan-Dal;Lee, Chi-Won W.
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.199-207
    • /
    • 2010
  • This research was conducted to determine the influence of physiological and chemical properties of root substrates on the growth of the daughter plants of 'Maehyang' strawberry produced by bag culture. The daughter plants produced by stock plants during bag culture were individually separated and grown in 10-cm diameter plastic pots containing six different formulations of root substrates: a) 50% peatmoss plus 50% vermiculite (5:5 by volume, A), b) 70% peatmoss plus 30% perlite (7:3, B), c) 70% coir dust plus 30% perlite (7:3, C), d) mixture of 35% coir dust, 35% peatmoss, and 30% perlite (3.5:3.5:3.0, D), e) mixture of 20% rice hull, 70% coir dust, and 10% perlite (2:7:1, E), and f) 30% rice hull plus 70% coir dust (30:70, F). The container capacity and air filled porosity of the growing medium varied greatly among the six substrate formulations evaluated. The substrates E and F had less container capacity and higher air-holding spaces than the rest of the formulations. Therefore, these two formulations (E and F) may cause a problem in water management during the production of healthy daughter plants. The substrate formulations A, B, and D retained higher nitrogen (N) concentrations than other formulations containing coir dust or rice hull. The substrate formulations E and F which contained rice hull had lower N, phosphorus (P), and potassium(K) concentrations than other substrate formulations containing coir. The quality of the daughter plants grown in all six different substrate formulations was good with the crown diameters at around 10 mm. Fresh weights of the daughter plants grown in substrate formulations A, C, and D were higher than those obtained from B, E, and F. Dry weights of the daughter plants showed a similar trend. The daughter plants having high fresh and dry weights and increased crown diameter are in demand by the industry. For this reason, the substrate formulations A, C and D can readily be used as potting mixes during the production of 'Maehyang' strawberry transplants utilizing the bag culture system.

Composition and EC of Nutrient Solution on Growth and Quality of Carrot (Daucus carrota L.) in Hydroponics (당근 수경재배시 생육 및 품질에 미치는 배양액 조성 및 농도)

  • Oh, Dong-Gyu;Cha, Mi-Kyung;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.340-345
    • /
    • 2017
  • Carrot leaves have many nutrients as well as roots, which will increase the demand for carrot leaves in the future. This study was carried out by dividing into two stages: high temperature and low temperature periods, in order to investigate the possibility of cultivation of carrot leaves and the composition and EC of the nutrient solution for growth and quality of carrot leaves. Composition of nutrient solution($NO_3-N:16.0$, $NH_4-N:1.0$, P: 1.0, K: 11.0, Ca: 2.0, Mg: 1.0, $SO_4-S:1.0mM{\cdot}L^{-1}$) developed by analysis of plant. In the high temperature range (From June $29^{th}$ to Sep. $8^{th}$, 2016), the concentration of the developed nutrient solution (JNU) were 1.0, 2.0, 3.0, and $4.0dS{\cdot}m^{-1}$ and the concentration of nutrient solution of Japanese Horticultural Station(JHS) $2.0dS{\cdot}m^{-1}$ was used for comparison. In the low temperature range (From Dec. $31^{st}$, 2015 to Feb. $29^{th}$, 2016), the concentration of the developed nutrient solution 1.0, 2.0, and $3.0dS{\cdot}m^{-1}$ were used. Growth was investigated in root fresh and dry weights, shoot fresh and dry weights, leaf number, and leaf area of carrot. In the high temperature range, the leaf area and shoot fresh and dry weights were good at 1.0 and $2.0dS{\cdot}m^{-1}$. The sugar content of the root was the highest at the EC $2.0dS{\cdot}m^{-1}$, and the chlorophyll content was the highest at the EC $4.0dS{\cdot}m^{-1}$. In the low temperature range, The shoot fresh and dry weights were the highest at EC 1.0 and $2.0dS{\cdot}m^{-1}$. There was no significant difference in sugar content and chlorophyll content. As a result, from the viewpoint of growth and quality of carrot, it is good to cultivate EC 1.0 and $2.0dS{\cdot}m^{-1}$ in high temperature period and low temperature period, but EC $1.0dS{\cdot}m^{-1}$ is economical perspective such as fertilizer input.