• Title/Summary/Keyword: fresh water discharge

Search Result 105, Processing Time 0.021 seconds

Regional Distribution of Hydrocarbon Degrading Bacteria in the Sediment of South Sea, Korea (남해해역 퇴적토의 탄화수소 분해세균 분포)

  • 김상진;최성찬
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.366-370
    • /
    • 1992
  • Sediment samples were collected from the stations 0101-0921 located between N $32^{\circ}$30'~$34^{\circ}$30' and E $123^{\circ}$30'-$128^{\circ}$30' during July 31-August lO. 1988. The distributions of total heterotrophic bacteria, freshwater bacteria and hydrocarbon degrading bacteria were studied. Each bacterial distribution was in the range of $3{\times}10^{5}~9.2{\times}10^{6}CFU/cm^{3}$sediment, $3{\times}10^{3}~2.1{\times}10^{6}CFU/cm^{3}$ sediment and $2{\times}10^{4}~6.2{\times}10^{6}CFU/cm^{3}$ sediment. respectively. The percent of hydrocarbon degrading bacteria against total heterotrophic bacteria was 0.7-73,2 % which was much higher than other marine sediments reported. These values were statistically analyzed with the percent of freshwater bacteria against total heterotrophic bacteria. These two parameters were well correlated with the correlation coefficient r= 0.60058 (n=34) and P=0.OOO2. This means that the distributions of hydrocarbon degrading bacteria and freshwater bacteria in the research area were affected together by the fresh water discharge into the sea environment. Therefore it can be concluded that the distribution of hydrocarbon degrading bacteria in the sediment of South Sea was affected by petroleum hydrocarbon input from terrestrial region through rivers.

  • PDF

Changes of Sedimentary Environment in the Tidal Flat of the Dammed Yeongsan River Estuary, Southwestern Coast of Korea (영산강 하구 갯벌의 퇴적환경 변화)

  • Kim, Young-Gil;Lee, Myong Sun;Chang, Jin Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.687-697
    • /
    • 2019
  • By monitoring sediment grain size and level variation of tidal flat surface for 6 years (2005-2011), and also by mooring TISDOS (tidal-flat sediment dynamics observation system) on the low intertidal flat in 2008, we investigated the sedimentary environment of tidal flat in the dammed Yeongsan River Estuary. The tidal flat of the Yeongsan River Estuary lost 82 % of its area because of coastal development projects, and a narrow tidal flat below mean sea level now remains. Most of the tidal flat sediments are composed of silt up to 70-94 %, and show the characteristics of clay deficiency and silt dominance. This is closely related with the coastal development, which led to the destruction of high tidal flats where most mud settled, and the modification of tidal current patterns. Moreover, the estuarine tidal-flat sediments reveal seasonal variation. They are coarse with abundant silt during windy autumn to spring, fine with abundant clay during the less-windy and high-discharge summer. This phenomenon indicates that the behavior of sediment particles on the low intertidal flats of the Yeongsan River Estuary is influenced by wind waves for silt and fresh water discharge and the tidal process for clay. Monitoring results of the altitude of tidal flat surface showed that the study area had eroded at an average rate of -2.6 cm/y during the period of 2005-2011, and also that an unusual deposition with a rate of 4 cm/y occurred in 2010. The erosion can be explained by an increased tidal amplitude and a strengthened ebb-dominant tidal asymmetry after the construction of an estuary dike and the Yeongam Kumho Seawall. The deposition in 2010 seems to have been closely related to the mass production of suspended materials from dredging of the estuary.

The characteristics of marine environment and phytoplankton community around southwestern waters for ichthyotoxic dinoflagellate Cochlodinium polykrikoides monitoring programme (남서해역의 유해성 적조생물 Cochlodinium polykrikoides Margalef 모니터링을 위한 환경특성 식물플랑크톤 군집 동태)

  • Cho Eun Seob;Choi Yong Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.177-184
    • /
    • 2005
  • This study was to determine the fluctuation in phytoplankton assemblages with regarding to environmental conditions and nutrients, which were surveyed around Mokpo waters in the southwestern waters, Korea. Sampling was carried out on the Mokpo, Sinan, and Wando coasts from March to November 2003. The maximum sea surface temperature was recorded in August, and it ranged around $25^{\circ}C$ regardless of sampling sites. However, salinity in Mokpo waters showed a great variation, which ranged from 5-30 psu and recoded the minimum of 5 psu in July and the maximum of 30 psu in November. Moreover, in Mokpo waters, the chlorophyll a and SS concentration of the surface layer were also the highest values of $20\;{\mu}g\;l^{-1}\;and\;40\;{\mu}g\;l^{-1}$, respectively than those of Sinan and Wando waters. The concentrations of $NH_4-N,\;NO_2-N,\;NO_3-N,\;and\;PO_4-P$ were also he highest values of $0.018\;{\mu}mol\;^l{-1},\;0.062\;{\mu}mol\;l^{-1},\;1.2\;{\mu}mol\;l^{-1}\;and\;0.078\;{\mu}mol\;l^{-1}$, respectively in Morpo waters than those of Sinan and Wando waters. During the period of this study, the majority of the taxa were diatoms; Thalassiosira rotula, Rhizosolenia setigera, Prorocentrum minimum, Chaetoceros curvisetus, Leptocylindrus danicus, Pseudonitzschia pungens, and Chaetoceros spp. were detected in the dominant species of phytoplankton. The dinoflagellates were relatively abundant during the summer season in Wando waters, which attained an abundance of $10-20\%$. In Mokpo waters, DIN/DIP was the highest value of 700 in March, whereas the lowest was shown in Wando waters. However, DIN/DIP value in summer at Wando waters was extremely reversed, which appeared to be associated with the development of dinoflagellates. On the bais of factor analysis using SYSAT 6.0, nutrient showed somewhat correlation with chlorophyll a. Consequently, the process of discharge of fresh water in Mokpo waters plays an important role in extremely fluctuation in nutrients and conditions. Although Wando waters maintains a lack of nutrients, it should be influenced by different water current and may be associated with a concentration of nutrients.

Human Impact on Sedimentary Environment of Estuarine Coastal Salt Marches, Southern Coastal Region of Korea Peninsula (인위적 환경변화에 따른 해안지역 퇴적환경의 변화)

  • 박의준
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.2
    • /
    • pp.111-125
    • /
    • 2001
  • An estuary is semi-inclosed inlets, located between terrestrial and marine environment. Since many estuaries along south-western coasts of Korean peninsula were affected by human settlements and activities, significant changes in sedimentation environments have been observed. The research area is divided into three distinct morpho-stratigraphic units: fluvial dominated area(Area1), mixed area(Area 2), tide-dominated area(Area3). The landform of this area has been changed by reclamation and river channel change. Temporal variations affected by dam construction, periodic freshet was iterrupted. Sediments began to continuously accmulate on estuary banks by tide. Meanwhile, because of the continuous but reduced discharge of fresh water, the salinity of estuarine sediments was declined. That processes made vegetated area( Phregmites lonivalvis and Suaeda japonica) to be expanded. It indicates that the magnitude and frequency of geomorphic processes has been significantly changed.

  • PDF

Variations in Nutrients & $CO_2$ Uptake Rates of Porphyra yezoensis Ueda and a Simple Evaluation of in situ N & C Demand Rates at Aquaculture Farms in South Korea (방사무늬김(Porphyra yezoensis Ueda)의 영양염과 이산화탄소 흡수율 정밀 평가를 통한 양식해역의 질소와 탄소 요구량 산정)

  • Shim, JeongHee;Hwang, Jae Ran;Lee, Sang Yong;Kwon, Jung-No
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.297-305
    • /
    • 2014
  • In order to understand the contribution of seaweed aquaculture to nutrients and carbon cycles in coastal environments, we measured the nutrients & carbon uptake rates of Porphyra yezoensis Ueda sampled at Nakdong-River Estuary using a chamber incubation method from November 2011 to April 2012. It was observed that the production rate of dissolved oxygen by P. yezoensis (n=30~40) was about $68.8{\pm}46.0{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and uptake rate of nitrate, phosphate and dissolved inorganic carbon (DIC) was found to be $2.5{\pm}1.8{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, $0.18{\pm}0.11{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and $87.1{\pm}57.3{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, respectively. There was a positive linear correlation existed between the production rate of dissolved oxygen and the consumption rates of nitrate, phosphate and DIC, respectively, suggesting that these factors may serve as good indicators of P. yezoensis photosynthesis. Further, there was a negative logarithmic relationship between fresh weight of thallus and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (0.1~0.3 g) were much more efficient at nutrients and $CO_2$ uptake than old specimens. It means that the early culturing stage than harvesting season might have more possibilities to be developed chlorosis by high rates of nitrogen uptake. However, N & C demanding rates of Busan and Jeollabuk-do, calculated by monthly mass production and culturing area, were much higher than those of Jeollanam-do, the highest harvesting area in Korea. Chlorosis events at Jeollabuk-do recently might have developed by the reason that heavily culture in narrow area and insufficient nutrients in maximum yield season (Dec.~Jan.) due mostly to shortage of land discharge and weak water circulation. The annual DIC uptake by P. yezoensis in Nakdong-River Estuary was estimated about $5.6{\times}10^3\;CO_2$ ton, which was about 0.03% of annual carbon dioxide emission of Busan City. Taken together, we suggest more research would be helpful to gain deep insight to evaluate the roles of seaweed aquaculture to the coastal nutrients cycles and global carbon cycle.