• Title/Summary/Keyword: frequency-response

Search Result 5,571, Processing Time 0.032 seconds

Beat Map of King Song-Dok Bell (성덕대왕신종의 맥놀이 지도)

  • Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.353.1-353
    • /
    • 2002
  • Impulse response of a slightly asymmetric cylindrical shell is derived. Receptance method is applied to obtain the vibration mode and natural frequency of the slightly asymmetric cylindrical shell. Impulse response model is used to identify the vibration beat characteristics of King Song-Dok Bell. The theretical mode is compared and verified by the measured mode of King Song-Dok Bell. (omitted)

  • PDF

Seismic Response Analysis of Wood Structure Using Nonlinear Time History Method (비선형 시간 이력법에 의한 목조 가옥의 지진응답해석)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.212-219
    • /
    • 1998
  • Dynamic analyses are performed for the wood structure modeled as a SDOF hysteretic system. The hysteresis model presented is a modified version of Takeda model. The comparison between the results of numerical simulation and the experimental results show good agreements in overall tendencies. The response of wood structure subjected to artificially generated earthquakes considering site effects is studied. It appears that the response is very strongly influenced by the intensity and the frequency contents of the ground motion.

  • PDF

A Study on the Selection of GPR Type Suitable for Road Cavity Detection (도로동공 탐지에 적합한 GPR 타입 선정에 관한 연구)

  • Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Deok;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.69-75
    • /
    • 2017
  • PURPOSES : The purpose of this study is to evaluate different types of Ground Penetrating Radar (GPR) testing for characterizing the road cavity detection. The impulse and step-frequency-type GPR tests were conducted on a full-scale testbed with an artificial void installation. After analyzing the response signals of GPR tests for detecting the road cavity, the characteristics of each GPR response was evaluated for a suitable selection of GPR tests. METHODS : Two different types of GPR tests were performed to estimate the limitation and accuracy for detecting the cavities underneath the asphalt pavement. The GPR signal responses were obtained from the testbed with different cavity sizes and depths. The detection limitation was identified by a signal penetration depth at a given cavity for impulse and step-frequency-type GPR testing. The unique signal characteristics was also observed at cavity sections. RESULTS : The impulse-type GPR detected the 500-mm length of cavity at a depth of 1.0 m, and the step-frequency-type GPR detected the cavity up to 1.5 m. This indicates that the detection capacity of the step-frequency type is better than the impulse type. The step-frequency GPR testing also can reflect the howling phenomena that can more accurately determine the cavity. CONCLUSIONS :It is found from this study that the step-frequency GPR testing is more suitable for the road cavity detection of asphalt pavement. The use of step-frequency GPR testing shows a distinct image at the cavity occurrences.

Analysis of Frequency Response Curve for Conduction-Cooled Power Capacitors (전도 냉각 파워 커패시터의 주파수 응답 곡선 분석)

  • An, Gyeong Moon;Kim, Hiesik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.123-130
    • /
    • 2016
  • High-frequency induction heating equipment can heat the metal by applying a High-Frequency power to the resonant circuit. The resonance circuit is composed of the work coil and the conduction-cooled power capacitor, it influences the performance of the heat treatment equipment according to the characteristics of the capacitor. However, dependence on conduction-cooled power capacitor's import is high due to lack of core technology research and development. Minimizing the generation of internal heat transmitted inside during LC resonance, reduce the reactive power loss, there is a need for a capacitor within the voltage characteristic outstanding. To implement localization it is vital that prior study of the analysis on the frequency response characteristic for the finished capacitor advanced manufacturer be implemented. Studying the interpolation method to read the value at any point of the characteristic curve for a given log-log scale was applied to the analysis tool of the capacitor by my proposed algorithm. The simulation for reproducing frequency response curves was attempted by assuming a capacitor in a simplified series equivalent RC circuit to obtain the equivalent series resistance value. It was confirmed that the reproduction rate was the result value above 83% as compared to the simulation of the properties and characteristics on the actual reactive power for Peak value, and that the algorithm can be applicable when analyzing and predicting the characteristic curves of a simpled model capacitor.

Application of Effective Earthquake Force by the Boundary Reaction Method and a PML for Nonlinear Time-Domain Soil-Structure Interaction Analysis of a Standard Nuclear Power Plant Structure (원전구조물의 비선형 시간영역 SSI 해석을 위한 경계반력법에 의한 유효지진하중과 PML의 적용)

  • Lee, Hyeok Ju;Lim, Jae Sung;Moon, Il Hwan;Kim, Jae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.25-35
    • /
    • 2023
  • Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.

Continous rail absorber design using decay rate calculation in FEM

  • Molatefi, Habibollah;Izadbakhsh, Soroush
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.455-466
    • /
    • 2013
  • In recent years, many countries have added railway noise to the issues covered by noise regulations. It is known that the rail is the dominant source of rolling noise at frequency range of 500Hz-2000Hz for the conventional speeds (<160km/h). One of the effective ways to reduce noise from railway track is using a rail vibration absorber. To study the acoustic performance of rail absorber, the decay rates of vibration have long been used by researcher. In this paper, A FE model of a periodic supported rail with infinite element in ABAQUS is developed to study the acoustic performance of the rail absorber. To compute the decay rates, acceleration responses along the rail transferred to MATLAB to obtain response levels in frequency domain and then by processing the response levels, the decay rates obtained for each1/3octav band. Continous rail absorber is represented by a steel layer and an elastomer layer. The decay rates for conventional rail and rail with one-side absorber and also, the rail with two side absorber are obtained and compared. Then, to improve the system of rail absorber, a steel plate with elastomer layer is added to bottom of the rail foot. The vertical decay rate results show that the decay rate of rail vibration along the track is significantly increased around the tuned frequency of the absorber and thus the rail vibration energy is substantially reduced in the corresponding frequency region and also effective in rail noise reduction.

Measurements and Analysis of Fingerprinting Structures for WLAN Localization Systems

  • Al KhanbashI, Nuha;Al Sindi, Nayef;Ali, Nazar;Al-Araji, Saleh
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.634-644
    • /
    • 2016
  • Channel-based radio-frequency fingerprinting such as a channel impulse response (CIR), channel transfer function (CTF), and frequency coherence function (FCF) have been recently proposed to improve the accuracy at the physical layer; however, their empirical performance, advantages, and limitations have not been well reported. This paper provides a comprehensive empirical performance evaluation of RF location fingerprinting, focusing on a comparison of received-signal strength, CIR-, CTF-, and FCF-based fingerprinting using the weighted k-nearest neighbor pattern recognition technique. Frequency domain channel measurements in the IEEE 802.11 band taken on a university campus were used to evaluate the accuracy of the fingerprinting types and their robustness to human-induced motion perturbations of the channel. The localization performance was analyzed, and the results are described using the spatial and temporal radio propagation characteristics. In particular, we introduce the coherence region to explain the spatial properties and investigate the impact of the Doppler spread in time-varying channels on the time coherence of RF fingerprint structures.

Study on Strength Durability of Automotive Front Bumper during Driving (주행 중 자동차 앞 범퍼의 강도 내구성에 관한 연구)

  • Han, Moon-Sik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.673-679
    • /
    • 2013
  • This study investigates the strength durability of an automotive front bumper subjected to vibrations during driving. Through structural analyses,the maximum equivalent stresses of models 1 and 2 were found to be 187.09 and 278.4 MPa, respectively. The maximum deformations of models 1 and 2 were 1.3772 and 2.675 mm, respectively. As model 1 shows less deformation than model 2, itis stronger than model 2. Models 1and 2 show natural frequencies within 230 Hz as the range of the maximum harmonic response frequency. Models 1 and 2 have maximum amplitude displacements of 0.105 and 0.154 mm at critical frequencies of 159 and 110 Hz, respectively. As model 1 has a higher critical frequency than model 2, it has more strength durability than model 2. This study result can be effectively utilized for the design of a front bumper by investigating prevention against damage and its strength durability.

Experimental Study On Power Flow Analysis of Vibration of Various Coupled Plates (다양한 연성 평판 진동에 대한 파워흐름해석법의 실험적 연구)

  • Hwang, S.G.;Kil, H.G.;Lee, G.H.;Lee, J.Y.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.901-904
    • /
    • 2007
  • The power flow analysis (PFA) can be effectively used to predict structural vibration in medium-to-high frequency ranges. In this paper, vibration experiments have been performed to observe the analytical characteristics of the power flow analysis of the vibration of various coupled plates. Those plates include two plates coupled with angles of $90^{\circ}$\;and\;30^{\circ}$, respectively. In the experiment, the loss factor and the input mobility at a source point on each coupled plate have been measured. The data for the loss factors have been used as the input data to predict the vibration of the coupled plates with PFA. The frequency response functions have been measured over the surface of the coupled plates. The comparison between the experimental results and the predicted PFA results for the frequency response functions has been performed.

  • PDF